Skip to main content
Erschienen in: Foundations of Computational Mathematics 1/2023

22.10.2021

The Geometry of Off-the-Grid Compressed Sensing

verfasst von: Clarice Poon, Nicolas Keriven, Gabriel Peyré

Erschienen in: Foundations of Computational Mathematics | Ausgabe 1/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Compressed sensing (CS) ensures the recovery of sparse vectors from a number of randomized measurements proportional to their sparsity. The initial theory considers discretized domains, and the randomness makes the physical positions of the grid nodes irrelevant. Most imaging devices, however, operate over some continuous physical domain, and it makes sense to consider Dirac masses with arbitrary positions. In this article, we consider such a continuous setup and analyze the performance of the BLASSO algorithm, which is the continuous extension of the celebrated LASSO \(\ell ^1\) regularization method. This approach is appealing from a numerical perspective because it avoids to discretize the domain of interest. Previous works considered translation-invariant measurements, such as randomized Fourier coefficients, in which it makes clear that the discrete theory should be extended by imposing a minimum distance separation constraint (often called “Rayleigh limit”) between the Diracs. These prior works, however, rule out many domains and sensing operators of interest, which are not translation invariant. This includes, for instance, Laplace measurements over the positive reals and Gaussian mixture models over the mean-covariance space. Our theoretical advances crucially rely on the introduction of a canonical metric associated with the measurement operator, which is the so-called Fisher geodesic distance. In the case of Fourier measurements, one recovers the Euclidean metric, but this metric can cope with arbitrary (possibly non-translation invariant) domains. Furthermore, it is naturally invariant under joint reparameterization of both the sensing operator and the Dirac locations. Our second and main contribution shows that if the Fisher distance between spikes is larger than a Rayleigh separation constant, then the BLASSO recovers in a stable way a stream of Diracs, provided that the number of measurements is proportional (up to log factors) to the number of Diracs. We measure the stability using an optimal transport distance constructed on top of the Fisher geodesic distance. Our result is (up to log factor) sharp and does not require any randomness assumption on the amplitudes of the underlying measure. Our proof technique relies on an infinite-dimensional extension of the so-called golfing scheme which operates over the space of measures and is of general interest.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1

Here, we write \({\hat{\eta }}\) to distinguish from the “limit” certificate \(\eta \) that we built in the case \(m\rightarrow \infty \).

 
Literatur
  1. Absil, P.A., Mahony, R., Sepulchre, R.: Optimization Algorithms on Matrix Manifolds (2014). https://​doi.​org/​10.​1515/​9781400830244
  2. Akkouchi, M.: On the convolution of exponential distributions. Journal of the Chungcheong Mathematical Society 21(4), 501–510 (2008)
  3. Amari, S.i., Nagaoka, H.: Methods of information geometry, vol. 191. American Mathematical Soc. (2007)
  4. Azais, J.M., De Castro, Y., Gamboa, F.: Spike detection from inaccurate samplings. Applied and Computational Harmonic Analysis 38(2), 177–195 (2015)MathSciNetView ArticleMATH
  5. Bach, F.: Breaking the curse of dimensionality with convex neural networks. Journal of Machine Learning Research 18(19), 1–53 (2017)MATH
  6. Bendory, T., Eldar, Y.C.: Recovery of sparse positive signals on the sphere from low resolution measurements. IEEE Signal Processing Letters 22(12), 2383–2386 (2015)View Article
  7. Beurling, A.: Sur les intégrales de fourier absolument convergentes et leur application à une transformation fonctionelle. In: Ninth Scandinavian Mathematical Congress, pp. 345–366 (1938)
  8. Boyd, N., Schiebinger, G., Recht, B.: The alternating descent conditional gradient method for sparse inverse problems. SIAM Journal on Optimization 27(2), 616–639 (2017)MathSciNetView ArticleMATH
  9. Bredies, K., Pikkarainen, H.K.: Inverse problems in spaces of measures. ESAIM Control, Optimisation and Calculus of Variations 19(1), 190–218 (2013)MathSciNetMATH
  10. Burger, M., Osher, S.: Convergence rates of convex variational regularization. Inverse problems 20(5), 1411 (2004)MathSciNetView ArticleMATH
  11. Burges, C.J.: Geometry and invariance in kernel based methods. MIT Press (1999)
  12. Caffarelli, L., McCann, R.J.: Free boundaries in optimal transport and monge-ampere obstacle problems. Annals of mathematics 171(2), 673–730 (2010)MathSciNetView ArticleMATH
  13. Campbell, L.L.: An extended čencov characterization of the information metric. Proceedings of the American Mathematical Society 98(1), 135–141 (1986)MathSciNet
  14. Candès, E.J., Fernandez-Granda, C.: Super-resolution from noisy data. Journal of Fourier Analysis and Applications 19(6), 1229–1254 (2013). https://​doi.​org/​10.​1007/​s00041-013-9292-3MathSciNetView ArticleMATH
  15. Candès, E.J., Fernandez-Granda, C.: Towards a mathematical theory of super-resolution. Communications on Pure and Applied Mathematics 67(6), 906–956 (2014). https://​doi.​org/​10.​1002/​cpa.​21455MathSciNetView ArticleMATH
  16. Candes, E.J., Plan, Y.: A probabilistic and RIPless theory of compressed sensing. IEEE Transactions on Information Theory 57(11), 7235–7254 (2011)MathSciNetView ArticleMATH
  17. Candès, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on information theory 52(2), 489–509 (2006)MathSciNetView ArticleMATH
  18. Cencov, N.N.: Statistical decision rules and optimal inference. 53. American Mathematical Soc. (1982)
  19. Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis pursuit. SIAM review 43(1), 129–159 (2001)MathSciNetView ArticleMATH
  20. Chizat, L., Bach, F.: On the global convergence of gradient descent for over-parameterized models using optimal transport. In: Advances in neural information processing systems, pp. 3036–3046 (2018)
  21. Chizat, L., Peyré, G., Schmitzer, B., Vialard, F.X.: Unbalanced optimal transport: Dynamic and kantorovich formulations. Journal of Functional Analysis 274(11), 3090–3123 (2018)MathSciNetView ArticleMATH
  22. Cormode, G., Garofalakis, M., Haas, P.J., Jermaine, C.: Synopses for Massive Data: Samples, Histograms, Wavelets, Sketches. Foundations and Trends in Databases 4, 1–294 (2011). https://​doi.​org/​10.​1561/​1900000004View ArticleMATH
  23. Costa, S.I., Santos, S.A., Strapasson, J.E.: Fisher information distance: a geometrical reading. Discrete Applied Mathematics 197, 59–69 (2015)MathSciNetView ArticleMATH
  24. Dasgupta, S., Gupta, A.: An Elementary Proof of a Theorem of Johnson and Lindenstrauss. Random Structures and Algorithms 22(1), 60–65 (2003). https://​doi.​org/​10.​1002/​rsa.​10073MathSciNetView ArticleMATH
  25. De Castro, Y., Gamboa, F.: Exact reconstruction using Beurling minimal extrapolation. Journal of Mathematical Analysis and applications 395(1), 336–354 (2012)MathSciNetView ArticleMATH
  26. De Castro, Y., Gamboa, F., Henrion, D., Lasserre, J.B.: Exact solutions to super resolution on semi-algebraic domains in higher dimensions. IEEE Transactions on Information Theory 63(1), 621–630 (2016)MathSciNetView ArticleMATH
  27. Denoyelle, Q., Duval, V., Peyré, G.: Support recovery for sparse super-resolution of positive measures. Journal of Fourier Analysis and Applications 23(5), 1153–1194 (2017)MathSciNetView ArticleMATH
  28. Denoyelle, Q., Duval, V., Peyre, G., Soubies, E.: The Sliding Frank-Wolfe Algorithm and its Application to Super-Resolution Microscopy. Inverse Problems (2019). https://​doi.​org/​10.​1088/​1361-6420/​ab2a29
  29. Donoho, D.L.: Compressed sensing. IEEE Transactions on information theory 52(4), 1289–1306 (2006)MathSciNetView ArticleMATH
  30. Duval, V., Peyré, G.: Exact support recovery for sparse spikes deconvolution. Foundations of Computational Mathematics 15(5), 1315–1355 (2015)MathSciNetView ArticleMATH
  31. Duval, V., Peyré, G.: Sparse spikes super-resolution on thin grids I: the LASSO. Inverse Problems 33(5), 055008 (2017). https://​doi.​org/​10.​1088/​1361-6420/​aa5e12MathSciNetView ArticleMATH
  32. Eftekhari, A., Tanner, J., Thompson, A., Toader, B., Tyagi, H.: Sparse non-negative super-resolution-simplified and stabilised. arXiv preprint arXiv:​1804.​01490 (2018)
  33. Ekanadham, C., Tranchina, D., Simoncelli, E.P.: A unified framework and method for automatic neural spike identification. Journal of neuroscience methods 222, 47–55 (2014)View Article
  34. Facchi, P., Kulkarni, R., Man’ko, V.I., Marmo, G., Sudarshan, E.C., Ventriglia, F.: Classical and quantum Fisher information in the geometrical formulation of quantum mechanics. Physics Letters, Section A: General, Atomic and Solid State Physics 374(48), 4801–4803 (2010). https://​doi.​org/​10.​1016/​j.​physleta.​2010.​10.​005
  35. Fernandez-Granda, C.: Support detection in super-resolution. Proc. Proceedings of the 10th International Conference on Sampling Theory and Applications pp. 145–148 (2013)
  36. Foucart, S., Rauhut, H.: A mathematical introduction to compressive sensing, vol. 1. Birkhäuser Basel (2013)
  37. Gribonval, R., Blanchard, G., Keriven, N., Traonmilin, Y.: Compressive statistical learning with random feature moments. arXiv preprint arXiv:​1706.​07180 (2017)
  38. Griffiths, D.: Introduction to Quantum Mechanics. Pearson Education, Inc. (2004). https://​doi.​org/​10.​1063/​1.​2958160
  39. Gross, D.: Recovering low-rank matrices from few coefficients in any basis. IEEE Transactions on Information Theory 57(3), 1548–1566 (2011)MathSciNetView ArticleMATH
  40. Kunis, S., Peter, T., Römer, T., von der Ohe, U.: A multivariate generalization of Prony’s method. Linear Algebra and its Applications 490, 31–47 (2016)
  41. Liao, W., Fannjiang, A.: MUSIC for single-snapshot spectral estimation: Stability and super-resolution. Applied and Computational Harmonic Analysis 40(1), 33–67 (2016)MathSciNetView ArticleMATH
  42. Liero, M., Mielke, A., Savaré, G.: Optimal entropy-transport problems and a new hellinger–kantorovich distance between positive measures. Inventiones mathematicae 211(3), 969–1117 (2018)MathSciNetView ArticleMATH
  43. Minsker, S.: On some extensions of bernstein’s inequality for self-adjoint operators. Statistics & Probability Letters 127, 111–119 (2017)MathSciNetView ArticleMATH
  44. Poon, C., Keriven, N., Peyré, G.: Support localization and the fisher metric for off-the-grid sparse regularization. In: Proc. AISTATS’19 (2019). arXiv:​1810.​03340
  45. Poon, C., Peyré, G.: Multi-dimensional sparse super-resolution. SIAM Journal on Mathematical Analysis 51(1), 1–44 (2019). https://​doi.​org/​10.​1137/​17M1147822MathSciNetView ArticleMATH
  46. Prony, G.: Essai expérimental et analytique: sur les lois de la dilatabilité de fluides élastique et sur celles de la force expansive de la vapeur de l’alkool, à différentes températures. J. de l’Ecole Polytechnique 1(22), 24–76 (1795)
  47. Rao, C.R.: Information and the accuracy attainable in the estimation of statistical parameters. Bull. Calcutta Math. Soc. 37, 81–91 (1945)MathSciNetMATH
  48. Roy, R., Kailath, T.: ESPRIT-estimation of signal parameters via rotational invariance techniques. IEEE Transactions on acoustics, speech, and signal processing 37(7), 984–995 (1989)View ArticleMATH
  49. Santambrogio, F.: Optimal transport for applied mathematicians. Birkäuser, NY 55, 58–63 (2015)MATH
  50. Sauer, T.: Prony’s method in several variables. Numerische Mathematik 136(2), 411–438 (2017)
  51. Schiebinger, G., Robeva, E., Recht, B.: Superresolution without separation. Information and Inference: A Journal of the IMA 7(1), 1–30 (2018)MathSciNetView ArticleMATH
  52. Schmidt, R.: Multiple emitter location and signal parameter estimation. IEEE transactions on antennas and propagation 34(3), 276–280 (1986)View Article
  53. Soubies, E., Blanc-Féraud, L., Aubert, G.: A continuous exact \(\ell _0\) penalty (CEL0) for least squares regularized problem. SIAM Journal on Imaging Sciences 8(3), 1607–1639 (2015)MathSciNetView ArticleMATH
  54. Tang, G., Bhaskar, B.N., Recht, B.: Sparse recovery over continuous dictionaries-just discretize. In: 2013 Asilomar Conference on Signals, Systems and Computers, pp. 1043–1047. IEEE (2013)
  55. Tang, G., Bhaskar, B.N., Shah, P., Recht, B.: Compressed sensing off the grid. IEEE transactions on information theory 59(11), 7465–7490 (2013)MathSciNetView ArticleMATH
  56. Tibshirani, R.: Regression shrinkage and selection via the Lasso. Journal of the Royal Statistical Society. Series B (Methodological) pp. 267–288 (1996)
  57. Tropp, J.A.: Greed is good: Algorithmic results for sparse approximation. IEEE Transactions on Information theory 50(10), 2231–2242 (2004)MathSciNetView ArticleMATH
Metadaten
Titel
The Geometry of Off-the-Grid Compressed Sensing
verfasst von
Clarice Poon
Nicolas Keriven
Gabriel Peyré
Publikationsdatum
22.10.2021
Verlag
Springer US
Erschienen in
Foundations of Computational Mathematics / Ausgabe 1/2023
Print ISSN: 1615-3375
Elektronische ISSN: 1615-3383
DOI
https://doi.org/10.1007/s10208-021-09545-5

Weitere Artikel der Ausgabe 1/2023

Foundations of Computational Mathematics 1/2023 Zur Ausgabe

Premium Partner