Skip to main content
Top
Published in: Journal of Computational Electronics 5/2021

12-07-2021

Analysis and design of a passive spatial filter for sub-6 GHz 5G communication systems

Authors: Ankush Kapoor, Pradeep Kumar, Ranjan Mishra

Published in: Journal of Computational Electronics | Issue 5/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A frequency-selective surface (FSS) is able to transmit or reflect incoming electromagnetic waves, and these properties of FSS can be utilized in printed antennas to improve the performance of these antennas. Sub-6 GHz frequency bands are used in fifth-generation (5G) systems for various applications. This paper presents the design and analysis of a wideband band-pass spatial filter using a double square loop frequency-selective surface (DSLFSS) for the sub-6 GHz 5G frequency range 1 (FR1). The proposed spatial filter consists of DSLFSS elements and can be placed on the patch radiator to increase the radiation characteristics in n77, n78, and n79 bands of the sub-6 GHz 5G spectrum. The effect of varying the width of the loops, angle of incidence. and polarization on the transmission coefficient in the frequency band of operation is analyzed. The design is synthesized using the closed form mathematical expressions for finding the physical dimensions of the spatial filter. Design trade-offs are reported based on the proposed mathematical formulation and simulations. The designed DSLFSS structure is fabricated and measured. The design results are authenticated by comparing results from the Ansys HFSS v20 Electronic Desktop Circuit Editor and measurement setup. In addition, the extension of the results from a unit cell is taken to the \(2 \times 2\) array and \(10 \times 10\) array, which shows nearly the same performance, hence confirming the stability of the DSLFSS structure. The proposed DSLFSS-based spatial filter has the potential for use in the design and development of patch radiators with improved radiation characteristics.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Munk, B.A.: Frequency selective surfaces: theory and design, 1st edn. Wiley, New York (2000)CrossRef Munk, B.A.: Frequency selective surfaces: theory and design, 1st edn. Wiley, New York (2000)CrossRef
2.
go back to reference Raspopoulos, M., Stavrou, S.: Frequency selective buildings through frequency selective surfaces. IEEE Trans. Antennas Propag. 59(8), 2998–3005 (2011)CrossRef Raspopoulos, M., Stavrou, S.: Frequency selective buildings through frequency selective surfaces. IEEE Trans. Antennas Propag. 59(8), 2998–3005 (2011)CrossRef
3.
go back to reference Kanth, V.K., Raghavan, S.: EM design and analysis of a substrate integrated waveguide based on a frequency-selective surface for millimeter wave radar application. J. Comput. Electron. 18(1), 189–196 (2019)CrossRef Kanth, V.K., Raghavan, S.: EM design and analysis of a substrate integrated waveguide based on a frequency-selective surface for millimeter wave radar application. J. Comput. Electron. 18(1), 189–196 (2019)CrossRef
4.
go back to reference Roy, K., Dey, P., Hasan, N., Roy, B., Parui, S. K.: Implementation on design of a novel frequency selective surface. In: 2020 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS), pp 1–6. Vancouver, BC (2020) Roy, K., Dey, P., Hasan, N., Roy, B., Parui, S. K.: Implementation on design of a novel frequency selective surface. In: 2020 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS), pp 1–6. Vancouver, BC (2020)
5.
go back to reference Phon, R., Ghosh, S., Lim, S.: Active frequency selective surface to switch between absorption and transmission band with additional frequency tuning capability. IEEE Trans. Antennas Propag. 67(9), 6059–6067 (2019)CrossRef Phon, R., Ghosh, S., Lim, S.: Active frequency selective surface to switch between absorption and transmission band with additional frequency tuning capability. IEEE Trans. Antennas Propag. 67(9), 6059–6067 (2019)CrossRef
6.
go back to reference Kapoor, A., Mishra, R., Kumar, P.: Slotted wideband frequency selective reflectors for sub-6 GHz 5G devices. In: IEEE International Conference on Computing, Communication and Intelligent Systems, India (2021) Kapoor, A., Mishra, R., Kumar, P.: Slotted wideband frequency selective reflectors for sub-6 GHz 5G devices. In: IEEE International Conference on Computing, Communication and Intelligent Systems, India (2021)
7.
go back to reference Unaldi, S., Cimen, S., Cakir, G., Ayten, U.E.: A novel dual-band ultrathin FSS with closely settled frequency response. IEEE Antennas Wirel. Propag. Lett. 16, 1381–1384 (2017)CrossRef Unaldi, S., Cimen, S., Cakir, G., Ayten, U.E.: A novel dual-band ultrathin FSS with closely settled frequency response. IEEE Antennas Wirel. Propag. Lett. 16, 1381–1384 (2017)CrossRef
8.
go back to reference Anwar, R.S., Mao, L., Ning, H.: Frequency selective surfaces: a review. Appl. Sci. 8, 1689 (2018)CrossRef Anwar, R.S., Mao, L., Ning, H.: Frequency selective surfaces: a review. Appl. Sci. 8, 1689 (2018)CrossRef
9.
go back to reference Karahan, M., Aksoy, E., Yavuz, Y.: A frequency selective surface design to reduce the interference effect on satellite communication. In: 2017 8th International Conference on Recent Advances in Space Technologies (RAST), Istanbul, pp. 221–223 (2017) Karahan, M., Aksoy, E., Yavuz, Y.: A frequency selective surface design to reduce the interference effect on satellite communication. In: 2017 8th International Conference on Recent Advances in Space Technologies (RAST), Istanbul, pp. 221–223 (2017)
10.
go back to reference Habib, S., Kiani, G.I., Butt, M.F.U.: A convoluted frequency selective surface for wideband communication applications. IEEE Access 7, 65075–65082 (2019)CrossRef Habib, S., Kiani, G.I., Butt, M.F.U.: A convoluted frequency selective surface for wideband communication applications. IEEE Access 7, 65075–65082 (2019)CrossRef
11.
go back to reference Yepes, C., Cavallo, D., Neto, A., Gandini, E., Monni, S., Van Vliet, F.E.: Spatial filtering frequency selective surface for wide-angle scanning phased arrays. In: 2017 47th European Microwave Conference (EuMC), Nuremberg, pp. 596–599 (2017) Yepes, C., Cavallo, D., Neto, A., Gandini, E., Monni, S., Van Vliet, F.E.: Spatial filtering frequency selective surface for wide-angle scanning phased arrays. In: 2017 47th European Microwave Conference (EuMC), Nuremberg, pp. 596–599 (2017)
12.
go back to reference Rahim, T., Khan, F.A., Jiadong, X.: Design of X-band frequency selective surface (FSS) with band pass characteristics based on miniaturized unit cell. In: 13th International Bhurban Conference on Applied Sciences and Technology (IBCAST), Islamabad, pp. 592–594 (2016) Rahim, T., Khan, F.A., Jiadong, X.: Design of X-band frequency selective surface (FSS) with band pass characteristics based on miniaturized unit cell. In: 13th International Bhurban Conference on Applied Sciences and Technology (IBCAST), Islamabad, pp. 592–594 (2016)
13.
go back to reference Areias, T.C., Carvalho, R.N.G., Silva, M.W.B., Matos, L.J.: Frequency selective surface microwave absorber for WLAN applications. J. Commun. Inf. Syst. 35, 1 (2020) Areias, T.C., Carvalho, R.N.G., Silva, M.W.B., Matos, L.J.: Frequency selective surface microwave absorber for WLAN applications. J. Commun. Inf. Syst. 35, 1 (2020)
14.
go back to reference Harnois, M., Himdi, M., Yong, W.Y., et al.: An improved fabrication technique for the 3-d frequency selective surface based on water transfer printing technology. Sci Rep 10, 1714 (2020)CrossRef Harnois, M., Himdi, M., Yong, W.Y., et al.: An improved fabrication technique for the 3-d frequency selective surface based on water transfer printing technology. Sci Rep 10, 1714 (2020)CrossRef
15.
go back to reference Kanth, V.K., Raghavan, S.: Dual-band frequency selective surface based on shunted SIW cavity technology. IEEE Microw Wirel Compon Lett. 30(3), 245–248 (2020)CrossRef Kanth, V.K., Raghavan, S.: Dual-band frequency selective surface based on shunted SIW cavity technology. IEEE Microw Wirel Compon Lett. 30(3), 245–248 (2020)CrossRef
16.
go back to reference Jia, M., He, X., Yang, Y., Hua, B., Hu, W., Qian, X.: Wideband ultraminiaturised-element frequency selective surface based on interlocked 25-dimensional structures. Prog. Electromagnet. Res. Lett. 88, 37–42 (2020)CrossRef Jia, M., He, X., Yang, Y., Hua, B., Hu, W., Qian, X.: Wideband ultraminiaturised-element frequency selective surface based on interlocked 25-dimensional structures. Prog. Electromagnet. Res. Lett. 88, 37–42 (2020)CrossRef
17.
go back to reference Joozdani, M.Z., Amirhosseini, M.K.: Equivalent circuit model for the frequency-selective surface embedded in a layer with constant conductivity. IEEE Trans. Antennas Propag. 65, 705–712 (2017)CrossRef Joozdani, M.Z., Amirhosseini, M.K.: Equivalent circuit model for the frequency-selective surface embedded in a layer with constant conductivity. IEEE Trans. Antennas Propag. 65, 705–712 (2017)CrossRef
18.
go back to reference Lee, S., Zarrillo, G., Law, C.L.: Simple formulas for transmission through periodic metal grids or plates. IEEE Trans. Antennas Propag. 30, 904–909 (1982)CrossRef Lee, S., Zarrillo, G., Law, C.L.: Simple formulas for transmission through periodic metal grids or plates. IEEE Trans. Antennas Propag. 30, 904–909 (1982)CrossRef
19.
go back to reference Liu, N., Sheng, X., Zhang, C., Fan, J., Guo, D.: A design method for synthesizing wideband band-stop FSS via its equivalent circuit model. IEEE Antennas Wirel. Propag. Lett. 16, 2721–2725 (2017)CrossRef Liu, N., Sheng, X., Zhang, C., Fan, J., Guo, D.: A design method for synthesizing wideband band-stop FSS via its equivalent circuit model. IEEE Antennas Wirel. Propag. Lett. 16, 2721–2725 (2017)CrossRef
20.
go back to reference Bashiri, M., Ghobadi, C., Nourinia, J., Majidzade, M.: WiMAX, WLAN, and X-band filtering mechanism: simple-structured triple-band frequency selective surface. IEEE Antennas Wirel. Propag. Lett. 16, 3245–3248 (2017)CrossRef Bashiri, M., Ghobadi, C., Nourinia, J., Majidzade, M.: WiMAX, WLAN, and X-band filtering mechanism: simple-structured triple-band frequency selective surface. IEEE Antennas Wirel. Propag. Lett. 16, 3245–3248 (2017)CrossRef
21.
go back to reference Hong, W.: Solving the 5G mobile antenna puzzle: assessing future directions for the 5G mobile antenna paradigm shift. IEEE Microw. Mag. 18, 86–102 (2017)CrossRef Hong, W.: Solving the 5G mobile antenna puzzle: assessing future directions for the 5G mobile antenna paradigm shift. IEEE Microw. Mag. 18, 86–102 (2017)CrossRef
22.
go back to reference Lee, J., et al.: Spectrum for 5G: global status, challenges, and enabling technologies. IEEE Commun. Mag. 56(3), 12–18 (2018)CrossRef Lee, J., et al.: Spectrum for 5G: global status, challenges, and enabling technologies. IEEE Commun. Mag. 56(3), 12–18 (2018)CrossRef
23.
go back to reference Marcuwitz, N.: Waveguide Handbook, 1st edn. McGraw-Hill, New York (1951) Marcuwitz, N.: Waveguide Handbook, 1st edn. McGraw-Hill, New York (1951)
24.
go back to reference Langley, R.J., Parker, E.A.: Equivalent circuit model for arrays of square loops. Electron. Lett. 18(7), 294–296 (1982)CrossRef Langley, R.J., Parker, E.A.: Equivalent circuit model for arrays of square loops. Electron. Lett. 18(7), 294–296 (1982)CrossRef
25.
go back to reference Langley, R.J., Drinkwater, A.J.: An improved empirical model for the Jerusalem cross. IEE Proc. H Microw. Opt. Antennas 129(1), 1–6 (1982)CrossRef Langley, R.J., Drinkwater, A.J.: An improved empirical model for the Jerusalem cross. IEE Proc. H Microw. Opt. Antennas 129(1), 1–6 (1982)CrossRef
26.
go back to reference Langley, R.J., Parker, E.A.: Double square frequency selective surfaces and their equivalent circuit. Electron. Lett. 19(17), 675–677 (1983)CrossRef Langley, R.J., Parker, E.A.: Double square frequency selective surfaces and their equivalent circuit. Electron. Lett. 19(17), 675–677 (1983)CrossRef
27.
go back to reference Lee, C.K., Langley, R.J.: Equivalent-circuit models for frequency selective surfaces at oblique angles of incidence. IEE Proc. H Microw. Opt. Antennas 132, 395–399 (1985)CrossRef Lee, C.K., Langley, R.J.: Equivalent-circuit models for frequency selective surfaces at oblique angles of incidence. IEE Proc. H Microw. Opt. Antennas 132, 395–399 (1985)CrossRef
28.
go back to reference Hamdy, S.M.A., Parker, E.A.: Comparison of modal analysis and equivalent circuit representation of E-plane of the Jerusalem cross. Electron. Lett. 18(2), 94–95 (1982)CrossRef Hamdy, S.M.A., Parker, E.A.: Comparison of modal analysis and equivalent circuit representation of E-plane of the Jerusalem cross. Electron. Lett. 18(2), 94–95 (1982)CrossRef
29.
go back to reference Parker, E. A.: The gentleman’s guide to frequency selective surfaces. In: 17th Q.M.W. Antenna Symposium, London (UK) (1991) Parker, E. A.: The gentleman’s guide to frequency selective surfaces. In: 17th Q.M.W. Antenna Symposium, London (UK) (1991)
30.
go back to reference Kapoor, A., Mishra, R. and Kumar, P.: Novel wideband frequency selective surface based spatial filters for Sub-6 GHz 5G devices. In: IEEE 4th Biennial International Conference on Nascent Technologies in Engineering, India (2021) Kapoor, A., Mishra, R. and Kumar, P.: Novel wideband frequency selective surface based spatial filters for Sub-6 GHz 5G devices. In: IEEE 4th Biennial International Conference on Nascent Technologies in Engineering, India (2021)
32.
go back to reference Jha, K.R., Singh, G., Jyoti, R.: A simple synthesis technique of single square loop frequency selective surface. Prog Electromagnet Res B 45, 165–185 (2013)CrossRef Jha, K.R., Singh, G., Jyoti, R.: A simple synthesis technique of single square loop frequency selective surface. Prog Electromagnet Res B 45, 165–185 (2013)CrossRef
33.
go back to reference Yilmaz, A.E., Kuzuoglu, M.: Design of the square loop frequency selective surfaces with particle swarm optimization via the equivalent circuit model. Radioengineering 18(2), 95–102 (2009) Yilmaz, A.E., Kuzuoglu, M.: Design of the square loop frequency selective surfaces with particle swarm optimization via the equivalent circuit model. Radioengineering 18(2), 95–102 (2009)
34.
go back to reference Archer, M.J.: Wave reactance of thin planar strip gratings. Int. J. Electron. 58, 187–230 (1985)CrossRef Archer, M.J.: Wave reactance of thin planar strip gratings. Int. J. Electron. 58, 187–230 (1985)CrossRef
35.
go back to reference Reed, J. A.: Frequency selective surfaces with multiple periodic elements. Ph.D. Dissertation, University of Texas at Dallas, USA, (1997). Reed, J. A.: Frequency selective surfaces with multiple periodic elements. Ph.D. Dissertation, University of Texas at Dallas, USA, (1997).
36.
go back to reference Li, M., Behdad, N.: Frequency selective surfaces for pulsed high-power microwave applications. IEEE Trans. Antennas Propag. 61(2), 677–687 (2013)CrossRef Li, M., Behdad, N.: Frequency selective surfaces for pulsed high-power microwave applications. IEEE Trans. Antennas Propag. 61(2), 677–687 (2013)CrossRef
37.
go back to reference Zhou, X., Luo, K., Chen, B., Wang, Y.: Simulation analysis of frequency selective surface with high power handling capability. In: 2015 7th Asia-Pacific Conference on Environmental Electromagnetics (CEEM), pp. 344–349 (2015) Zhou, X., Luo, K., Chen, B., Wang, Y.: Simulation analysis of frequency selective surface with high power handling capability. In: 2015 7th Asia-Pacific Conference on Environmental Electromagnetics (CEEM), pp. 344–349 (2015)
Metadata
Title
Analysis and design of a passive spatial filter for sub-6 GHz 5G communication systems
Authors
Ankush Kapoor
Pradeep Kumar
Ranjan Mishra
Publication date
12-07-2021
Publisher
Springer US
Published in
Journal of Computational Electronics / Issue 5/2021
Print ISSN: 1569-8025
Electronic ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-021-01742-3

Other articles of this Issue 5/2021

Journal of Computational Electronics 5/2021 Go to the issue