Skip to main content
Top
Published in: Neural Computing and Applications 12/2020

02-03-2019 | Hybrid Artificial Intelligence and Machine Learning Technologies

Analysis of Boolean functions based on interaction graphs and their influence in system biology

Authors: Ranjeet Kumar Rout, Santi P. Maity, Pabitra Pal Choudhury, Jayanta Kumar Das, Sk. Sarif Hassan, Hari Mohan Pandey

Published in: Neural Computing and Applications | Issue 12/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Biological regulatory network can be modeled through a set of Boolean functions. These set of functions enable graph representation of the network structure, and hence, the dynamics of the network can be seen easily. In this article, the regulations of such network have been explored in terms of interaction graph. With the help of Boolean function decomposition, this work presents an approach for construction of interaction graphs. This decomposition technique is also used to reduce the network state space of the cell cycle network of fission yeast for finding the singleton attractors. Some special classes of Boolean functions with respect to the interaction graphs have been discussed. A unique recursive procedure is devised which uses the Cartesian product of sets starting from the set of one-variable Boolean function. Interaction graphs generated with these Boolean functions have only positive/negative edges, and the corresponding state spaces have periodic attractors with length one/two.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Akutsu T, Kuhara S, Maruyama O, Miyano S (1998) A system for identifying genetic networks from gene expression patterns produced by gene disruptions and overexpressions. Genome Inf 9:151–160MATH Akutsu T, Kuhara S, Maruyama O, Miyano S (1998) A system for identifying genetic networks from gene expression patterns produced by gene disruptions and overexpressions. Genome Inf 9:151–160MATH
2.
go back to reference Ay F, Xu F, Kahveci T (2009) Scalable steady state analysis of boolean biological regulatory networks. PloS one 4(12):e7992CrossRef Ay F, Xu F, Kahveci T (2009) Scalable steady state analysis of boolean biological regulatory networks. PloS one 4(12):e7992CrossRef
3.
go back to reference Bao Z, Li X, Zan X, Shen L, Ma R, Liu W (2016) Signalling pathway impact analysis based on the strength of interaction between genes. IET Syst Biol 10(4):147–152CrossRef Bao Z, Li X, Zan X, Shen L, Ma R, Liu W (2016) Signalling pathway impact analysis based on the strength of interaction between genes. IET Syst Biol 10(4):147–152CrossRef
4.
go back to reference Bornholdt S (2005) Less is more in modeling large genetic networks. Science 310(5747):449–451CrossRef Bornholdt S (2005) Less is more in modeling large genetic networks. Science 310(5747):449–451CrossRef
5.
go back to reference Buck V, Ng S, Ruiz-Garcia AB, Papadopoulou K, Bhatti S, Samuel JM, Anderson M, Millar JB, McInerny CJ (2004) Fkh2p and sep1p regulate mitotic gene transcription in fission yeast. J Cell Sci 117(23):5623–5632CrossRef Buck V, Ng S, Ruiz-Garcia AB, Papadopoulou K, Bhatti S, Samuel JM, Anderson M, Millar JB, McInerny CJ (2004) Fkh2p and sep1p regulate mitotic gene transcription in fission yeast. J Cell Sci 117(23):5623–5632CrossRef
6.
go back to reference Chai LE, Loh SK, Low ST, Mohamad MS, Deris S, Zakaria Z (2014) A review on the computational approaches for gene regulatory network construction. Comput Biol Med 48:55–65CrossRef Chai LE, Loh SK, Low ST, Mohamad MS, Deris S, Zakaria Z (2014) A review on the computational approaches for gene regulatory network construction. Comput Biol Med 48:55–65CrossRef
7.
go back to reference Chaos A, Aldana M, Espinosa-Soto C, de León BGP, Arroyo AG, Alvarez-Buylla ER (2006) From genes to flower patterns and evolution: dynamic models of gene regulatory networks. J Plant Growth 25(4):278–289CrossRef Chaos A, Aldana M, Espinosa-Soto C, de León BGP, Arroyo AG, Alvarez-Buylla ER (2006) From genes to flower patterns and evolution: dynamic models of gene regulatory networks. J Plant Growth 25(4):278–289CrossRef
8.
go back to reference Chaves M, Laurent T (2018) Analysis tools for interconnected Boolean networks with biological applications. Front Physiol 9:1–18CrossRef Chaves M, Laurent T (2018) Analysis tools for interconnected Boolean networks with biological applications. Front Physiol 9:1–18CrossRef
11.
go back to reference Cheng D, Qi H, Li Z (2011) Model construction of boolean network via observed data. IEEE Trans Neural Netw 22(4):525–536CrossRef Cheng D, Qi H, Li Z (2011) Model construction of boolean network via observed data. IEEE Trans Neural Netw 22(4):525–536CrossRef
12.
go back to reference Ching WK, Chen X, Tsing NK (2009) Generating probabilistic boolean networks from a prescribed transition probability matrix. IET Syst Biol 3(6):453–464CrossRef Ching WK, Chen X, Tsing NK (2009) Generating probabilistic boolean networks from a prescribed transition probability matrix. IET Syst Biol 3(6):453–464CrossRef
13.
go back to reference Davidich MI, Bornholdt S (2008) Boolean network model predicts cell cycle sequence of fission yeast. PloS one 3(2):e1672CrossRef Davidich MI, Bornholdt S (2008) Boolean network model predicts cell cycle sequence of fission yeast. PloS one 3(2):e1672CrossRef
14.
go back to reference Devloo V, Hansen P, Labbé M (2003) Identification of all steady states in large networks by logical analysis. Bull Math Biol 65(6):1025–1051MATHCrossRef Devloo V, Hansen P, Labbé M (2003) Identification of all steady states in large networks by logical analysis. Bull Math Biol 65(6):1025–1051MATHCrossRef
15.
go back to reference Dougherty ER, Pal R, Qian X, Bittner ML, Datta A (2010) Stationary and structural control in gene regulatory networks: basic concepts. Int J Syst Sci 41(1):5–16MathSciNetMATHCrossRef Dougherty ER, Pal R, Qian X, Bittner ML, Datta A (2010) Stationary and structural control in gene regulatory networks: basic concepts. Int J Syst Sci 41(1):5–16MathSciNetMATHCrossRef
16.
go back to reference Espinosa-Soto C, Padilla-Longoria P, Alvarez-Buylla ER (2004) A gene regulatory network model for cell-fate determination during arabidopsis thaliana flower development that is robust and recovers experimental gene expression profiles. Plant Cell 16(11):2923–2939CrossRef Espinosa-Soto C, Padilla-Longoria P, Alvarez-Buylla ER (2004) A gene regulatory network model for cell-fate determination during arabidopsis thaliana flower development that is robust and recovers experimental gene expression profiles. Plant Cell 16(11):2923–2939CrossRef
17.
go back to reference Feng W, Yang SX, Wu H (2011) On delayed uncertain genetic regulatory networks: robust stability analysis. Int J Comput Math 88(12):2448–2463MathSciNetMATHCrossRef Feng W, Yang SX, Wu H (2011) On delayed uncertain genetic regulatory networks: robust stability analysis. Int J Comput Math 88(12):2448–2463MathSciNetMATHCrossRef
18.
go back to reference Gadouleau M, Richard A, Fanchon E (2018) Reduction and fixed points of boolean networks and linear network coding solvability. IEEE Trans Inf Theory 62(5):2504–2519MathSciNetMATHCrossRef Gadouleau M, Richard A, Fanchon E (2018) Reduction and fixed points of boolean networks and linear network coding solvability. IEEE Trans Inf Theory 62(5):2504–2519MathSciNetMATHCrossRef
19.
go back to reference Glass L, Kauffman SA (1973) The logical analysis of continuous, non-linear biochemical control networks. J Theor Biol 39(1):103–129CrossRef Glass L, Kauffman SA (1973) The logical analysis of continuous, non-linear biochemical control networks. J Theor Biol 39(1):103–129CrossRef
20.
go back to reference Grinstead CM, Snell JL (2012) Introduction to probability. American Math. Soc, ProvidenceMATH Grinstead CM, Snell JL (2012) Introduction to probability. American Math. Soc, ProvidenceMATH
21.
go back to reference Heidel J, Maloney J, Farrow C, Rogers J (2003) Finding cycles in synchronous boolean networks with applications to biochemical systems. Int J Bifurc Chaos 13(03):535–552MathSciNetMATHCrossRef Heidel J, Maloney J, Farrow C, Rogers J (2003) Finding cycles in synchronous boolean networks with applications to biochemical systems. Int J Bifurc Chaos 13(03):535–552MathSciNetMATHCrossRef
22.
go back to reference Huang S (1999) Gene expression profiling, genetic networks, and cellular states: an integrating concept for tumorigenesis and drug discovery. Int J Mol Med 77(6):469–480CrossRef Huang S (1999) Gene expression profiling, genetic networks, and cellular states: an integrating concept for tumorigenesis and drug discovery. Int J Mol Med 77(6):469–480CrossRef
23.
go back to reference Huang S (2006) Cell state dynamics and tumorigenesis in Boolean regulatory networks. Springer, BerlinCrossRef Huang S (2006) Cell state dynamics and tumorigenesis in Boolean regulatory networks. Springer, BerlinCrossRef
24.
go back to reference Kauffman SA (1969) Metabolic stability and epigenesis in randomly constructed genetic nets. J Theor Biol 22(3):437–467MathSciNetCrossRef Kauffman SA (1969) Metabolic stability and epigenesis in randomly constructed genetic nets. J Theor Biol 22(3):437–467MathSciNetCrossRef
25.
go back to reference Kauffman SA (1993) The origins of order: self-organization and selection in evolution. Oxford University Press, Oxford Kauffman SA (1993) The origins of order: self-organization and selection in evolution. Oxford University Press, Oxford
26.
go back to reference Lee S, Ko J, Tan X, Patel I, Balkrishnan R, Chang J (2014) Markov chain modelling analysis of HIV/AIDS progression: a race-based forecast in the united states. Indian J Pharm Sci 76(2):107 Lee S, Ko J, Tan X, Patel I, Balkrishnan R, Chang J (2014) Markov chain modelling analysis of HIV/AIDS progression: a race-based forecast in the united states. Indian J Pharm Sci 76(2):107
27.
go back to reference Li F, Long T, Lu Y, Ouyang Q, Tang C (2004) The yeast cell-cycle network is robustly designed. Proc Natl Acad Sci U S Am 101(14):4781–4786CrossRef Li F, Long T, Lu Y, Ouyang Q, Tang C (2004) The yeast cell-cycle network is robustly designed. Proc Natl Acad Sci U S Am 101(14):4781–4786CrossRef
28.
29.
go back to reference Li B (2017) Graphical reduction of probabilistic boolean networks. In: 36th Chinese control conference (CCC), 2017. IEEE, pp 1430–1434 Li B (2017) Graphical reduction of probabilistic boolean networks. In: 36th Chinese control conference (CCC), 2017. IEEE, pp 1430–1434
30.
go back to reference Mendoza L, Xenarios I (2006) A method for the generation of standardized qualitative dynamical systems of regulatory networks. Theor Biol Med Model 3(1):13CrossRef Mendoza L, Xenarios I (2006) A method for the generation of standardized qualitative dynamical systems of regulatory networks. Theor Biol Med Model 3(1):13CrossRef
31.
go back to reference Mochizuki A (2005) An analytical study of the number of steady states in gene regulatory networks. J Theor Biol 236(3):291–310MathSciNetCrossRef Mochizuki A (2005) An analytical study of the number of steady states in gene regulatory networks. J Theor Biol 236(3):291–310MathSciNetCrossRef
32.
go back to reference Needham CJ, Bradford JR, Bulpitt AJ, Westhead DR (2007) A primer on learning in bayesian networks for computational biology. PLOS Comput Biol 3(8):e129CrossRef Needham CJ, Bradford JR, Bulpitt AJ, Westhead DR (2007) A primer on learning in bayesian networks for computational biology. PLOS Comput Biol 3(8):e129CrossRef
33.
go back to reference Novak B, Pataki Z, Ciliberto A, Tyson JJ (2001) Mathematical model of the cell division cycle of fission yeast. Chaos interdiscip J Nonlinear Sci 11(1):277–286MATHCrossRef Novak B, Pataki Z, Ciliberto A, Tyson JJ (2001) Mathematical model of the cell division cycle of fission yeast. Chaos interdiscip J Nonlinear Sci 11(1):277–286MATHCrossRef
34.
go back to reference Pal R, Ivanov I, Datta A, Bittner ML, Dougherty ER (2005) Generating boolean networks with a prescribed attractor structure. Bioinformatics 21(21):4021–4025CrossRef Pal R, Ivanov I, Datta A, Bittner ML, Dougherty ER (2005) Generating boolean networks with a prescribed attractor structure. Bioinformatics 21(21):4021–4025CrossRef
35.
go back to reference Paulevé L, Richard A (2012) Static analysis of boolean networks based on interaction graphs: a survey. Electron Notes Theor Comput Sci 284:93–104MathSciNetMATHCrossRef Paulevé L, Richard A (2012) Static analysis of boolean networks based on interaction graphs: a survey. Electron Notes Theor Comput Sci 284:93–104MathSciNetMATHCrossRef
36.
go back to reference Rejc Z, Magdevska L, Trselic T, Osolin T, Mraz J, Pavliha E, Zimic N, Cvitanovic T, Rozman D, Moskon M, Mraz M (2017) Computational modelling of genome-scale metabolic networks and its application to CHO cell cultures. Comput Biol Med 88:150–160CrossRef Rejc Z, Magdevska L, Trselic T, Osolin T, Mraz J, Pavliha E, Zimic N, Cvitanovic T, Rozman D, Moskon M, Mraz M (2017) Computational modelling of genome-scale metabolic networks and its application to CHO cell cultures. Comput Biol Med 88:150–160CrossRef
37.
go back to reference Remy É, Ruet P, Thieffry D (2008) Graphic requirements for multistability and attractive cycles in a boolean dynamical framework. Adv Appl Math 41(3):335–350MathSciNetMATHCrossRef Remy É, Ruet P, Thieffry D (2008) Graphic requirements for multistability and attractive cycles in a boolean dynamical framework. Adv Appl Math 41(3):335–350MathSciNetMATHCrossRef
38.
go back to reference Rout RK, Choudhury PP, Sahoo S, Ray C (2015) Partitioning 1-variable boolean functions for various classification of n-variable boolean functions. Int J Comput Math 92(10):2066–2090MathSciNetMATHCrossRef Rout RK, Choudhury PP, Sahoo S, Ray C (2015) Partitioning 1-variable boolean functions for various classification of n-variable boolean functions. Int J Comput Math 92(10):2066–2090MathSciNetMATHCrossRef
39.
go back to reference Rout RK, Pal Choudhury P, Sahoo S (2013) Classification of boolean functions where affine functions are uniformly distributed. J Discrete Math 2013:1–12MATHCrossRef Rout RK, Pal Choudhury P, Sahoo S (2013) Classification of boolean functions where affine functions are uniformly distributed. J Discrete Math 2013:1–12MATHCrossRef
40.
go back to reference Rosenblueth DA, Muñoz S, Carrillo M, Azpeitia E (2014) Inference of Boolean networks from gene interaction graphs using a SAT solver. In: International conference on algorithms for computational biology. Springer, Cham, pp 235–246 Rosenblueth DA, Muñoz S, Carrillo M, Azpeitia E (2014) Inference of Boolean networks from gene interaction graphs using a SAT solver. In: International conference on algorithms for computational biology. Springer, Cham, pp 235–246
41.
go back to reference Saadatpour A, Albert R, Reluga TC (2013) A reduction method for boolean network models proven to conserve attractors. SIAM J Appl Dyn Syst 12(4):1997–2011MathSciNetMATHCrossRef Saadatpour A, Albert R, Reluga TC (2013) A reduction method for boolean network models proven to conserve attractors. SIAM J Appl Dyn Syst 12(4):1997–2011MathSciNetMATHCrossRef
42.
go back to reference Sahoo S, Choudhury PP, Chakraborty M (2008) Characterization of any non-linear boolean function using a set of linear operators. arXiv preprint arXiv:0808.1641 Sahoo S, Choudhury PP, Chakraborty M (2008) Characterization of any non-linear boolean function using a set of linear operators. arXiv preprint arXiv:0808.1641
43.
go back to reference Seixas FL, Zadrozny B, Laks J, Conci A, Saade DCM (2014) A bayesian network decision model for supporting the diagnosis of dementia, Alzheimer's disease and mild cognitive impairment. Comput Biol Med 51:140–158CrossRef Seixas FL, Zadrozny B, Laks J, Conci A, Saade DCM (2014) A bayesian network decision model for supporting the diagnosis of dementia, Alzheimer's disease and mild cognitive impairment. Comput Biol Med 51:140–158CrossRef
44.
go back to reference Shmulevich I, Dougherty ER (2010) Probabilistic Boolean networks: the modeling and control of gene regulatory networks. SIAM, AucklandMATHCrossRef Shmulevich I, Dougherty ER (2010) Probabilistic Boolean networks: the modeling and control of gene regulatory networks. SIAM, AucklandMATHCrossRef
45.
46.
go back to reference Thieffry D (2007) Dynamical roles of biological regulatory circuits. Brief Bioinform 8(4):220–225CrossRef Thieffry D (2007) Dynamical roles of biological regulatory circuits. Brief Bioinform 8(4):220–225CrossRef
47.
go back to reference Thomas R, d’Ari R (1990) Biological feedback. CRC Press, Boca RatonMATH Thomas R, d’Ari R (1990) Biological feedback. CRC Press, Boca RatonMATH
48.
go back to reference Trepode NW, de Farias CR, Barrera J (2013) A pattern-oriented specification of gene network inference processes. Comput Biol Med 43(10):1415–1427CrossRef Trepode NW, de Farias CR, Barrera J (2013) A pattern-oriented specification of gene network inference processes. Comput Biol Med 43(10):1415–1427CrossRef
51.
go back to reference Wu CH, Sahoo D, Arvanitis C, Bradon N, Dill DL, Felsher DW (2013) Correction: combined analysis of murine and human microarrays and chip analysis reveals genes associated with the ability of myc to maintain tumorigenesis. PLoS Genet 9(10):1–16CrossRef Wu CH, Sahoo D, Arvanitis C, Bradon N, Dill DL, Felsher DW (2013) Correction: combined analysis of murine and human microarrays and chip analysis reveals genes associated with the ability of myc to maintain tumorigenesis. PLoS Genet 9(10):1–16CrossRef
52.
go back to reference Xiao M, Zheng WX, Cao J (2014) Stability and bifurcation of genetic regulatory networks with small rnas and multiple delays. Int J Comput Math 91(5):907–927MATHCrossRef Xiao M, Zheng WX, Cao J (2014) Stability and bifurcation of genetic regulatory networks with small rnas and multiple delays. Int J Comput Math 91(5):907–927MATHCrossRef
53.
go back to reference Zhang F, Hu Y, Jia Y, Xie M (2012) New constructions of balanced boolean functions with high nonlinearity and optimal algebraic degree. Int J Comput Math 89(10):1319–1331MathSciNetMATHCrossRef Zhang F, Hu Y, Jia Y, Xie M (2012) New constructions of balanced boolean functions with high nonlinearity and optimal algebraic degree. Int J Comput Math 89(10):1319–1331MathSciNetMATHCrossRef
54.
go back to reference Zhou Y, Xie M, Xiao G (2009) On cross-correlation properties of boolean functions. In: Fourth international conference on communications and networking in China, 2009. ChinaCOM 2009. IEEE, pp 1–5 Zhou Y, Xie M, Xiao G (2009) On cross-correlation properties of boolean functions. In: Fourth international conference on communications and networking in China, 2009. ChinaCOM 2009. IEEE, pp 1–5
Metadata
Title
Analysis of Boolean functions based on interaction graphs and their influence in system biology
Authors
Ranjeet Kumar Rout
Santi P. Maity
Pabitra Pal Choudhury
Jayanta Kumar Das
Sk. Sarif Hassan
Hari Mohan Pandey
Publication date
02-03-2019
Publisher
Springer London
Published in
Neural Computing and Applications / Issue 12/2020
Print ISSN: 0941-0643
Electronic ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-019-04102-2

Other articles of this Issue 12/2020

Neural Computing and Applications 12/2020 Go to the issue

Premium Partner