Skip to main content
Top
Published in:
Cover of the book

2020 | OriginalPaper | Chapter

1. Analysis of Flame Topology and Burning Rates

Authors : Shrey Trivedi, Girish V. Nivarti, R. Stewart Cant

Published in: Data Analysis for Direct Numerical Simulations of Turbulent Combustion

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Datasets generated using Direct Numerical Simulation (DNS) are used to investigate the influence of local flame surface topology on global flame propagation. A mathematical framework based on Morse theory is presented and is shown to lead to a classification of all possible types of flame surface topology. A similar mathematical approach is shown to provide insight into the behaviour of the surface density function (SDF) and the displacement speed in the vicinity of flame pinch-off and pocket burnout events. DNS data for a pair of colliding premixed turbulent hydrogen–air flames is used to identify and locate topological points of interest and to determine their frequencies of occurrence on the flame surface. Further analysis of the dataset is carried out to evaluate terms of the SDF balance equation and the displacement speed in the presence of flame–flame interactions. Considerable insight is gained into the underlying mechanisms of flame propagation.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference H. Wang, E.R. Hawkes, J.H. Chen, B. Zhou, Direct numerical simulations of a high Karlovitz number laboratory premixed jet flame - an analysis of flame stretch and flame thickening. J. Fluid Mech. 815, 511–536 (2017)CrossRef H. Wang, E.R. Hawkes, J.H. Chen, B. Zhou, Direct numerical simulations of a high Karlovitz number laboratory premixed jet flame - an analysis of flame stretch and flame thickening. J. Fluid Mech. 815, 511–536 (2017)CrossRef
2.
go back to reference A.Y. Poludnenko, E.S. Oran, The interaction of high-speed turbulence with flames: global properties and internal flame structure. Combust. Flame 157, 995–1011 (2010)CrossRef A.Y. Poludnenko, E.S. Oran, The interaction of high-speed turbulence with flames: global properties and internal flame structure. Combust. Flame 157, 995–1011 (2010)CrossRef
3.
go back to reference K.N.C. Bray, J.B. Moss, A unified statistical model of the premixed turbulent flame. Acta Astron. 4, 291–320 (1977)CrossRef K.N.C. Bray, J.B. Moss, A unified statistical model of the premixed turbulent flame. Acta Astron. 4, 291–320 (1977)CrossRef
4.
go back to reference N. Peters, Turbulent Combustion (Cambridge University Press, Cambridge, 2000)CrossRef N. Peters, Turbulent Combustion (Cambridge University Press, Cambridge, 2000)CrossRef
5.
go back to reference T.M. Wabel, A.W. Skiba, J.E. Temme, J.F. Driscoll, Measurements to determine the regimes of premixed flames in extreme turbulence. Proc. Combust. Inst. 36, 1809–1816 (2017)CrossRef T.M. Wabel, A.W. Skiba, J.E. Temme, J.F. Driscoll, Measurements to determine the regimes of premixed flames in extreme turbulence. Proc. Combust. Inst. 36, 1809–1816 (2017)CrossRef
6.
go back to reference S.S. Girimaji, S.B. Pope, Propagating surfaces in isotropic turbulence. J. Fluid Mech. 234, 247–277 (1992)CrossRef S.S. Girimaji, S.B. Pope, Propagating surfaces in isotropic turbulence. J. Fluid Mech. 234, 247–277 (1992)CrossRef
7.
go back to reference N. Chakraborty, R.S. Cant, Statistical behavior and modeling of the flame normal vector in premixed turbulent flames. Num. Heat Trans, Part I: Appl. 50, 623–643 (2006) N. Chakraborty, R.S. Cant, Statistical behavior and modeling of the flame normal vector in premixed turbulent flames. Num. Heat Trans, Part I: Appl. 50, 623–643 (2006)
8.
go back to reference W.T. Ashurst, Geometry of premixed flames in three–dimensional turbulence, in Proceedings of the 1990 Summer Program. Center for Turbulence Research, Stanford University & NASA Ames (1990), pp. 245–253 W.T. Ashurst, Geometry of premixed flames in three–dimensional turbulence, in Proceedings of the 1990 Summer Program. Center for Turbulence Research, Stanford University & NASA Ames (1990), pp. 245–253
9.
go back to reference A.Y. Poludnenko, E.S. Oran, The interaction of high-speed turbulence with flames: turbulent flame speed. Combust. Flame 158, 301–326 (2011)CrossRef A.Y. Poludnenko, E.S. Oran, The interaction of high-speed turbulence with flames: turbulent flame speed. Combust. Flame 158, 301–326 (2011)CrossRef
10.
go back to reference M. Yoda, L. Hesselink, M.G. Mungal, Instantaneous three-dimensional concentration measurements in the self-similar region of a round high-Schmidt-number jet. J. Fluid Mech. 279, 313–350 (1994)CrossRef M. Yoda, L. Hesselink, M.G. Mungal, Instantaneous three-dimensional concentration measurements in the self-similar region of a round high-Schmidt-number jet. J. Fluid Mech. 279, 313–350 (1994)CrossRef
11.
go back to reference L. Wang, N. Peters, The length-scale distribution function of the distance between extremal points in passive scalar turbulence. J. Fluid Mech. 554, 457–475 (2006)CrossRef L. Wang, N. Peters, The length-scale distribution function of the distance between extremal points in passive scalar turbulence. J. Fluid Mech. 554, 457–475 (2006)CrossRef
12.
go back to reference Y. Shim, S. Tanaka, M. Tanahashi, T. Miyauchi, Local structure and fractal characteristics of H\(_2\)-air turbulent premixed flame. Proc. Combust. Inst. 33, 1455–1462 (2011)CrossRef Y. Shim, S. Tanaka, M. Tanahashi, T. Miyauchi, Local structure and fractal characteristics of H\(_2\)-air turbulent premixed flame. Proc. Combust. Inst. 33, 1455–1462 (2011)CrossRef
13.
go back to reference Y. Minamoto, N. Swaminathan, R.S. Cant, T. Leung, Morphological and statistical features of reaction zones in MILD and premixed combustion. Combust. Flame 161, 2801–2814 (2014)CrossRef Y. Minamoto, N. Swaminathan, R.S. Cant, T. Leung, Morphological and statistical features of reaction zones in MILD and premixed combustion. Combust. Flame 161, 2801–2814 (2014)CrossRef
15.
go back to reference W. Kollmann, J.H. Chen, Pocket formation and the flame surface density equation. Proc. Combust. Inst. 27, 927–934 (1998)CrossRef W. Kollmann, J.H. Chen, Pocket formation and the flame surface density equation. Proc. Combust. Inst. 27, 927–934 (1998)CrossRef
16.
go back to reference J.H. Chen, T. Echekki, W. Kollmann, The mechanism of two-dimensional pocket formation in lean premixed methane-air flames with implications to turbulent combustion. Combust. Flame. 116, 15–48 (1999)CrossRef J.H. Chen, T. Echekki, W. Kollmann, The mechanism of two-dimensional pocket formation in lean premixed methane-air flames with implications to turbulent combustion. Combust. Flame. 116, 15–48 (1999)CrossRef
17.
go back to reference S. Trivedi, R.A.C. Griffiths, H. Kolla, J.H. Chen, R.S. Cant, Topology of pocket formation in turbulent premixed flames. Proc. Combust. Inst. 37, 2619–2626 (2019)CrossRef S. Trivedi, R.A.C. Griffiths, H. Kolla, J.H. Chen, R.S. Cant, Topology of pocket formation in turbulent premixed flames. Proc. Combust. Inst. 37, 2619–2626 (2019)CrossRef
18.
go back to reference R.A.C. Griffiths, J.H. Chen, H. Kolla, R.S. Cant, W. Kollmann, Three-dimensional topology of turbulent premixed flame interaction. Proc. Combust. Inst. 35, 1341–1348 (2015)CrossRef R.A.C. Griffiths, J.H. Chen, H. Kolla, R.S. Cant, W. Kollmann, Three-dimensional topology of turbulent premixed flame interaction. Proc. Combust. Inst. 35, 1341–1348 (2015)CrossRef
19.
go back to reference S. Trivedi, G.V. Nivarti, R.S. Cant, Flame self-interactions with increasing turbulence intensity. Proc. Combust. Inst. 37, 2443–2449 (2019)CrossRef S. Trivedi, G.V. Nivarti, R.S. Cant, Flame self-interactions with increasing turbulence intensity. Proc. Combust. Inst. 37, 2443–2449 (2019)CrossRef
20.
21.
go back to reference L. Vervisch, E. Bidaux, K.N.C. Bray, W. Kollmann, Surface density function in premixed turbulent combustion modeling, similarities between probability density function and flame surface approaches. Phys. Fluids 7, 2496–2503 (1995)CrossRef L. Vervisch, E. Bidaux, K.N.C. Bray, W. Kollmann, Surface density function in premixed turbulent combustion modeling, similarities between probability density function and flame surface approaches. Phys. Fluids 7, 2496–2503 (1995)CrossRef
22.
go back to reference R.S. Cant, S.B. Pope, K.N.C. Bray, Modelling of flamelet surface-to-volume ratio in turbulent premixed combustion. Proc. Combust. Inst. 23, 809–815 (1990)CrossRef R.S. Cant, S.B. Pope, K.N.C. Bray, Modelling of flamelet surface-to-volume ratio in turbulent premixed combustion. Proc. Combust. Inst. 23, 809–815 (1990)CrossRef
23.
go back to reference E.R. Hawkes, R.S. Cant, A flame surface density approach to Large-Eddy Simulation of premixed turbulent combustion. Proc. Combust. Inst. 28, 51–58 (2000)CrossRef E.R. Hawkes, R.S. Cant, A flame surface density approach to Large-Eddy Simulation of premixed turbulent combustion. Proc. Combust. Inst. 28, 51–58 (2000)CrossRef
24.
go back to reference M. Boger, D. Veynante, H. Boughanem, A. Trouvé, Direct numerical simulation analysis of flame surface density concept for large eddy simulation of turbulent premixed combustion. Proc. Combust. Inst. 27, 917–925 (1998)CrossRef M. Boger, D. Veynante, H. Boughanem, A. Trouvé, Direct numerical simulation analysis of flame surface density concept for large eddy simulation of turbulent premixed combustion. Proc. Combust. Inst. 27, 917–925 (1998)CrossRef
25.
go back to reference E.R. Hawkes, O. Chatakonda, H. Kolla, A.R. Kerstein, J.H. Chen, A petascale direct numerical simulation study of the modelling of flame wrinkling for large eddy simulations in intense turbulence. Combust. Flame 159, 2690–2703 (2012)CrossRef E.R. Hawkes, O. Chatakonda, H. Kolla, A.R. Kerstein, J.H. Chen, A petascale direct numerical simulation study of the modelling of flame wrinkling for large eddy simulations in intense turbulence. Combust. Flame 159, 2690–2703 (2012)CrossRef
26.
go back to reference J. Li, Z. Zhao, A. Kazarov, F.L. Dryer, An updated comprehensive kinetic model of hydrogen combustion. Int. J. Chem. Kinet. 36, 566–575 (2004)CrossRef J. Li, Z. Zhao, A. Kazarov, F.L. Dryer, An updated comprehensive kinetic model of hydrogen combustion. Int. J. Chem. Kinet. 36, 566–575 (2004)CrossRef
27.
go back to reference J.H. Chen, A. Choudhary, B. de Supinski, M. DeVries, E.R. Hawkes, S. Klasky, W.K. Liao, K.L. Ma, J. Mellor-Crummey, N. Podhorszki, R. Sankaran, S. Shende, C.S. Yoo, Terascale direct numerical simulations of turbulent combustion using S3D. Comput. Sci. Discov. 2, 015001 (2009)CrossRef J.H. Chen, A. Choudhary, B. de Supinski, M. DeVries, E.R. Hawkes, S. Klasky, W.K. Liao, K.L. Ma, J. Mellor-Crummey, N. Podhorszki, R. Sankaran, S. Shende, C.S. Yoo, Terascale direct numerical simulations of turbulent combustion using S3D. Comput. Sci. Discov. 2, 015001 (2009)CrossRef
Metadata
Title
Analysis of Flame Topology and Burning Rates
Authors
Shrey Trivedi
Girish V. Nivarti
R. Stewart Cant
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-44718-2_1

Premium Partner