Skip to main content
Top

2020 | OriginalPaper | Chapter

2. Dissipation Element Analysis of Inert and Reacting Turbulent Flows

Authors : Dominik Denker, Antonio Attili, Heinz Pitsch

Published in: Data Analysis for Direct Numerical Simulations of Turbulent Combustion

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Dissipation elements provide a procedure for compartmentalizing scalar fields into physically meaningful sub-units which provides a direct measure for turbulent scales. Furthermore, dissipation elements enable a variety of additional ways of investigating non-local effects in reacting and non-reacting turbulent flows. After the underlying physical ideas of dissipation elements are explained and a parameterization of dissipation elements is defined, the method of detecting dissipation elements with gradient trajectories is explained and physical and numerical prerequisites are presented. Common characteristics of dissipation elements are interpreted and compared for a large range of selected reacting and non-reacting flow configurations. To provide the reader with a degree of familiarity, dissipation element statistics are then related to more commonly used methods of obtaining statistics. The additional benefit of using the dissipation element analysis in free shear flows is highlighted by using it as an alternative way of identifying turbulent core regions. Next, a dissipation element-based procedure for the local investigation of the turbulence–combustion interaction in the context of non-premixed flames is presented. The chapter is concluded with the application of a dissipation element statistics-based modeling procedure for computational fluid dynamics of a passenger car diesel engine, employing the previously gained insight into the structure of turbulent scalar fields.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference A.A. Wray, J.C.R. Hunt, Algorithms for classification of turbulent structures, in Topological Fluid Mechanics, eds. by H.K. Moffat, A. Tsinober (Cambridge University Press, Cambridge, 1990), pp. 95–104 A.A. Wray, J.C.R. Hunt, Algorithms for classification of turbulent structures, in Topological Fluid Mechanics, eds. by H.K. Moffat, A. Tsinober (Cambridge University Press, Cambridge, 1990), pp. 95–104
2.
go back to reference N. Peters, L. Wang, Dissipation element analysis of scalar fields in turbulence. C. R. Mechanique 334, 493–506 (2006)CrossRef N. Peters, L. Wang, Dissipation element analysis of scalar fields in turbulence. C. R. Mechanique 334, 493–506 (2006)CrossRef
3.
go back to reference A. Schnorr, D. Helmrich, D. Denker, T. Kuhlen, B. Hentschel, Feature tracking by two-step optimization. Trans. Vis. Comput, Graph (accepted for publication) (2018) A. Schnorr, D. Helmrich, D. Denker, T. Kuhlen, B. Hentschel, Feature tracking by two-step optimization. Trans. Vis. Comput, Graph (accepted for publication) (2018)
4.
go back to reference L. Wang, Geometrical description of homogeneous shear turbulence using dissipation element analysis. PhD Thesis, RWTH University, 2008 L. Wang, Geometrical description of homogeneous shear turbulence using dissipation element analysis. PhD Thesis, RWTH University, 2008
5.
go back to reference D. D’acunto, K. Kurdyka, Bounds for gradient trajectories and geodesic diameter of real algebraic sets. Bull. Lond. Math. Soc. 38, 951–968 (2006)MathSciNetCrossRef D. D’acunto, K. Kurdyka, Bounds for gradient trajectories and geodesic diameter of real algebraic sets. Bull. Lond. Math. Soc. 38, 951–968 (2006)MathSciNetCrossRef
6.
go back to reference L.D. Floriani, M. Spangnuolo (eds.), Shape Analysis and Structuring (Springer, Berlin, 2007)MATH L.D. Floriani, M. Spangnuolo (eds.), Shape Analysis and Structuring (Springer, Berlin, 2007)MATH
7.
8.
9.
go back to reference L. Wang, N. Peters, The length scale distribution function of the distance between extremal points in passive scalar turbulence. J. Fluid Mech. 554, 457–475 (2006)CrossRef L. Wang, N. Peters, The length scale distribution function of the distance between extremal points in passive scalar turbulence. J. Fluid Mech. 554, 457–475 (2006)CrossRef
10.
go back to reference M. Gampert, P. Schaefer, J. Goebbert, N. Peters, Decomposition of the field of the turbulent kinetic energy into regions of compressive and extensive strain. Physica Scripta155(014002) (2013) M. Gampert, P. Schaefer, J. Goebbert, N. Peters, Decomposition of the field of the turbulent kinetic energy into regions of compressive and extensive strain. Physica Scripta155(014002) (2013)
11.
go back to reference D. Denker, A. Attili, S. Luca, M. Gauding, F. Bisetti, H. Pitsch, Dissipation element analysis of premixed jet flames. Comb. Sci. Tech., volume in press (2019) D. Denker, A. Attili, S. Luca, M. Gauding, F. Bisetti, H. Pitsch, Dissipation element analysis of premixed jet flames. Comb. Sci. Tech., volume in press (2019)
12.
go back to reference M. Gampert, P. Schaefer, N. Peters, Experimental investigation of dissipation-element statistics in scalar fields in a jet flow. J. Fluid Mech. 724, 337–366 (2013)CrossRef M. Gampert, P. Schaefer, N. Peters, Experimental investigation of dissipation-element statistics in scalar fields in a jet flow. J. Fluid Mech. 724, 337–366 (2013)CrossRef
13.
go back to reference J. Boschung, F. Hennig, D. Denker, H. Pitsch, R.J. Hill, Analysis of structure function equations up to the seventh order. J. Turbul. 1–32 (2017) J. Boschung, F. Hennig, D. Denker, H. Pitsch, R.J. Hill, Analysis of structure function equations up to the seventh order. J. Turbul. 1–32 (2017)
14.
go back to reference A. Attili, F. Bisetti, Fluctuations of a passive scalar in a turbulent mixing layer. Phys. Rev. E 3, 03301 (2013) A. Attili, F. Bisetti, Fluctuations of a passive scalar in a turbulent mixing layer. Phys. Rev. E 3, 03301 (2013)
15.
go back to reference D. Denker, K. Niemietz, A. Attili, M. Korkmaz, H. Pitsch, Prediction of non-premixed combustion regimes in a di diesel engine in various operation points, in Proceedings of the 9th European Combustion Meeting, April 14–17, Lisbon, Portugal (2019) D. Denker, K. Niemietz, A. Attili, M. Korkmaz, H. Pitsch, Prediction of non-premixed combustion regimes in a di diesel engine in various operation points, in Proceedings of the 9th European Combustion Meeting, April 14–17, Lisbon, Portugal (2019)
17.
go back to reference M. Gampert, J.H. Goebbert, P. Schaefer, M. Gauding, N. Peters, F. Aldudak, M. Oberlack, Extensive strain along gradient trajectories in the turbulent kinetic energy field. New J. Phys. 13, 043012 (2011)CrossRef M. Gampert, J.H. Goebbert, P. Schaefer, M. Gauding, N. Peters, F. Aldudak, M. Oberlack, Extensive strain along gradient trajectories in the turbulent kinetic energy field. New J. Phys. 13, 043012 (2011)CrossRef
18.
go back to reference R. Prasad, K.R. Sreenivasan, Scalar interfaces in digital images in turbulent flows. Exp. Fluids 7, 259–264 (1989)CrossRef R. Prasad, K.R. Sreenivasan, Scalar interfaces in digital images in turbulent flows. Exp. Fluids 7, 259–264 (1989)CrossRef
19.
go back to reference D.K. Bisset, M.M.R.J.C.R. Hunt, The turbulent/non-turbulent interface bounding a far wake. J. Fluid Mech. 451, 383–410 (2002)MathSciNetCrossRef D.K. Bisset, M.M.R.J.C.R. Hunt, The turbulent/non-turbulent interface bounding a far wake. J. Fluid Mech. 451, 383–410 (2002)MathSciNetCrossRef
20.
go back to reference M.S. Chong, A.E. Perry, B. Cantwell, The general classification of three dimensional flow fields. Phys. Fluids A 2, 408–420 (1990)MathSciNetCrossRef M.S. Chong, A.E. Perry, B. Cantwell, The general classification of three dimensional flow fields. Phys. Fluids A 2, 408–420 (1990)MathSciNetCrossRef
21.
go back to reference E. Effelsberg, N. Peters, A composite model for the conserved scalar pdf. Combust. Flame 50, 351–360 (1983)CrossRef E. Effelsberg, N. Peters, A composite model for the conserved scalar pdf. Combust. Flame 50, 351–360 (1983)CrossRef
22.
go back to reference J.P. Mellado, L. Wang, N. Peters, Gradient trajectory analysis of a scalar field with external intermittency. J. Fluid Mech 626, 333–365 (2009)CrossRef J.P. Mellado, L. Wang, N. Peters, Gradient trajectory analysis of a scalar field with external intermittency. J. Fluid Mech 626, 333–365 (2009)CrossRef
23.
go back to reference M. Gampert, P. Schäfer, V. Narayanaswamy, N. Peters, Gradient trajectory analysis in a jet flow for turbulent combustion modeling. J. Turbul. 14, 147–164 (2013)CrossRef M. Gampert, P. Schäfer, V. Narayanaswamy, N. Peters, Gradient trajectory analysis in a jet flow for turbulent combustion modeling. J. Turbul. 14, 147–164 (2013)CrossRef
24.
go back to reference N. Peters, Turbulent Combustion (Cambridge University Press, Cambridge, 2000)CrossRef N. Peters, Turbulent Combustion (Cambridge University Press, Cambridge, 2000)CrossRef
25.
go back to reference H. Pitsch, N. Peters, A consistent flamelet formulation for nonpremixed combustion considering differential diffusion effects. Combust. Flame 114, 26–40 (1998)CrossRef H. Pitsch, N. Peters, A consistent flamelet formulation for nonpremixed combustion considering differential diffusion effects. Combust. Flame 114, 26–40 (1998)CrossRef
26.
go back to reference M. Gauding, F. Dietzsch, J. Goebbert, D. Thévenin, A. Abdelsamie, C. Hasse, Dissipation element analysis of a turbulent non-premixed jet flame. Phys. Fluids 29(085103) (2017)CrossRef M. Gauding, F. Dietzsch, J. Goebbert, D. Thévenin, A. Abdelsamie, C. Hasse, Dissipation element analysis of a turbulent non-premixed jet flame. Phys. Fluids 29(085103) (2017)CrossRef
27.
go back to reference N. Peters, B. Kerschgens, G. Paczko, Super-Knock prediction using a refined theory of turbulence. SAE, 2013-01-1109 (2013) N. Peters, B. Kerschgens, G. Paczko, Super-Knock prediction using a refined theory of turbulence. SAE, 2013-01-1109 (2013)
Metadata
Title
Dissipation Element Analysis of Inert and Reacting Turbulent Flows
Authors
Dominik Denker
Antonio Attili
Heinz Pitsch
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-44718-2_2

Premium Partner