Skip to main content
Top
Published in: Archive of Applied Mechanics 6/2020

07-02-2020

Analysis of free vibration of functionally graded material micro-plates with thermoelastic damping

Authors: Shi-Rong Li, Hang-Kong Ma

Published in: Archive of Applied Mechanics | Issue 6/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper presents a theoretical investigation on the response of free vibration of functionally graded material (FGM) micro-plates with thermoelastic damping (TED). Continuous through thickness variation of the mechanical and thermal properties of the FGM plate is considered. By employing the simplified one-way coupled heat conduction equation and Kirchhoff’s plate theory, governing equations for the free vibration of the FGM micro-plates with thermoelastic coupling effect are established, in which stretching-bending coupling produced by the material inhomogeneity in the thickness direction is also considered. The heat conduction equation with variable coefficients is solved effectively by a layer-wise homogenization approach. Harmonic responses of the FGM micro-plates with complex frequency are obtained from the mathematical similarity between the eigenvalue problems of the FGM micro-plate with TED and that of the homogenous one without TED. The presented analytical solutions are suitable for evaluating TED in FGM micro-plates with arbitrary through-thickness material gradient, geometry and boundary conditions. Numerical results of TED for a ceramic-metal composite FGM micro-plate with power-law material gradient profile are illustrated to quantitatively show the effects of the material gradient index, the plate thickness, and the boundary conditions on the TED. The results indicate that by adjusting the physical and geometrical parameters of the FGM micro- plate, one can get the minimum of the TED which is even smaller than that of the pure ceramic resonator.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Nowacki, W.: Thermoelasticity, 2nd edn, pp. 1–50. PWN-Polish Scientific Publishers, Warszawa (1986)CrossRef Nowacki, W.: Thermoelasticity, 2nd edn, pp. 1–50. PWN-Polish Scientific Publishers, Warszawa (1986)CrossRef
2.
go back to reference Zener, C.: Internal fraction in solids. I. Theory of internal fraction in reeds. Phys. Rev. 52, 90–99 (1937)CrossRef Zener, C.: Internal fraction in solids. I. Theory of internal fraction in reeds. Phys. Rev. 52, 90–99 (1937)CrossRef
3.
go back to reference Zener, C.: Internal fraction in solids. II. General theory of thermoelastic friction. Phys. Rev. 53, 90–99 (1938)CrossRef Zener, C.: Internal fraction in solids. II. General theory of thermoelastic friction. Phys. Rev. 53, 90–99 (1938)CrossRef
4.
go back to reference Lifshitz, R., Roukes, M.L.: Thermoelastic damping in micro-and nanomechanical systems. Phys. Rev. B 61, 5600–5609 (2000)CrossRef Lifshitz, R., Roukes, M.L.: Thermoelastic damping in micro-and nanomechanical systems. Phys. Rev. B 61, 5600–5609 (2000)CrossRef
5.
go back to reference Nayfeh, A.H., Younis, M.I.: Modeling and simulations of thermoelastic damping in microplates. J. Micromech. Microeng. 14, 711–1717 (2004) Nayfeh, A.H., Younis, M.I.: Modeling and simulations of thermoelastic damping in microplates. J. Micromech. Microeng. 14, 711–1717 (2004)
6.
go back to reference Sun, Y.X., Tohmyoh, H.: Thermoelastic damping of the axisymmetric vibration of circular plate resonators. J. Sound Vib. 319, 392–405 (2009)CrossRef Sun, Y.X., Tohmyoh, H.: Thermoelastic damping of the axisymmetric vibration of circular plate resonators. J. Sound Vib. 319, 392–405 (2009)CrossRef
7.
go back to reference Sun, Y.X., Saka, M.: Thermoelastic damping in micro-scale circular plate resonators. J. Sound Vib. 329, 328–337 (2010)CrossRef Sun, Y.X., Saka, M.: Thermoelastic damping in micro-scale circular plate resonators. J. Sound Vib. 329, 328–337 (2010)CrossRef
8.
go back to reference Ali, N.A., Mohammadi, A.K.: Thermoelastic damping in clamped–clamped annular microplate. Appl. Mech. Mater. 110–116, 1870–1878 (2012) Ali, N.A., Mohammadi, A.K.: Thermoelastic damping in clamped–clamped annular microplate. Appl. Mech. Mater. 110–116, 1870–1878 (2012)
9.
go back to reference Salajeghe, S., Khadem, S.E., Rasekh, M.: Nonlinear analysis of thermoelastic damping in axisymmetric vibration of micro circular thin-plate resonators. Appl. Math. Model. 36, 5991–6000 (2012)MathSciNetCrossRef Salajeghe, S., Khadem, S.E., Rasekh, M.: Nonlinear analysis of thermoelastic damping in axisymmetric vibration of micro circular thin-plate resonators. Appl. Math. Model. 36, 5991–6000 (2012)MathSciNetCrossRef
10.
go back to reference Li, P., Fang, Y.M., Hu, R.F.: Thermoelastic damping in rectangular and circular microplate resonators. J. Sound Vib. 331, 721–733 (2012)CrossRef Li, P., Fang, Y.M., Hu, R.F.: Thermoelastic damping in rectangular and circular microplate resonators. J. Sound Vib. 331, 721–733 (2012)CrossRef
11.
go back to reference Yi, Y.B.: Finite element analysis of thermoelastic damping in contour-mode vibrations of micro-and nanoscale ring, disk, and elliptical plate resonators. J. Vib. Acoust. 132, 041015-1 (2010)CrossRef Yi, Y.B.: Finite element analysis of thermoelastic damping in contour-mode vibrations of micro-and nanoscale ring, disk, and elliptical plate resonators. J. Vib. Acoust. 132, 041015-1 (2010)CrossRef
12.
go back to reference Pei, Y.C.: Thermoelastic damping in rotating flexible micro-disk. Int. J. Mech. Sci. 61, 52–64 (2012)CrossRef Pei, Y.C.: Thermoelastic damping in rotating flexible micro-disk. Int. J. Mech. Sci. 61, 52–64 (2012)CrossRef
13.
go back to reference Fang, Y.M., Li, P., Wang, Z.L.: Thermoelastic damping in the axisymmetric vibration of circular micro plate resonators with two-dimensional heat conduction. J. Therm. Stress. 36, 830–850 (2013)CrossRef Fang, Y.M., Li, P., Wang, Z.L.: Thermoelastic damping in the axisymmetric vibration of circular micro plate resonators with two-dimensional heat conduction. J. Therm. Stress. 36, 830–850 (2013)CrossRef
14.
go back to reference Fang, Y.M., Li, P., Zhou, H.Y., Zuo, W.L.: Thermoelastic damping in rectangular microplate resonators with three-dimensional heat conduction. Int. J. Mech. Sci. 133, 578–589 (2017)CrossRef Fang, Y.M., Li, P., Zhou, H.Y., Zuo, W.L.: Thermoelastic damping in rectangular microplate resonators with three-dimensional heat conduction. Int. J. Mech. Sci. 133, 578–589 (2017)CrossRef
15.
go back to reference Bishop, G.E., Kinra, V.: Equivalence of the mechanical and entropic description of elastothermodynamics in composite materials. Mech. Compos. Mater. Struct. 3, 83–95 (1996)CrossRef Bishop, G.E., Kinra, V.: Equivalence of the mechanical and entropic description of elastothermodynamics in composite materials. Mech. Compos. Mater. Struct. 3, 83–95 (1996)CrossRef
16.
go back to reference Bishop, G.E., Kinra, V.: Elastothermaldynamic damping in laminated composites. Int. J. Solids Struct. 34, 1075–1092 (1997)CrossRef Bishop, G.E., Kinra, V.: Elastothermaldynamic damping in laminated composites. Int. J. Solids Struct. 34, 1075–1092 (1997)CrossRef
17.
go back to reference Vengallatore, S.: Analysis of thermoelastic damping in laminated composite micromechanical beam resonators. J. Micromech. Microeng. 15, 2398–2404 (2005)CrossRef Vengallatore, S.: Analysis of thermoelastic damping in laminated composite micromechanical beam resonators. J. Micromech. Microeng. 15, 2398–2404 (2005)CrossRef
18.
go back to reference Sun, Y.X., Yang, J., Yang, J.L.: Thermoelastic damping of the axisymmetric vibration of laminated trilayered circular plate resonators. Can. J. Phys. 92, 1026–1032 (2014)CrossRef Sun, Y.X., Yang, J., Yang, J.L.: Thermoelastic damping of the axisymmetric vibration of laminated trilayered circular plate resonators. Can. J. Phys. 92, 1026–1032 (2014)CrossRef
19.
go back to reference Liu, S.B., Sun, Y.X., Ma, Y.X., Yang, J.L.: Theoretical analysis of thermoelastic damping in bilayered circular plate resonators with two-dimensional heat conduction. Int. J. Mech. Sci. 135, 114–123 (2018)CrossRef Liu, S.B., Sun, Y.X., Ma, Y.X., Yang, J.L.: Theoretical analysis of thermoelastic damping in bilayered circular plate resonators with two-dimensional heat conduction. Int. J. Mech. Sci. 135, 114–123 (2018)CrossRef
20.
go back to reference Zuo, W.L., Li, P., Du, J.K., Huang, J.H.: Thermoelastic damping in trilayered microplate resonators. Int. J. Mech. Sci. 151, 595–608 (2019)CrossRef Zuo, W.L., Li, P., Du, J.K., Huang, J.H.: Thermoelastic damping in trilayered microplate resonators. Int. J. Mech. Sci. 151, 595–608 (2019)CrossRef
21.
go back to reference Wang, L.L., Li, X.P., Pan, W.P., Yang, Z.M., Xu, J.C.: Analysis of thermoelastic damping in bilayered rectangular microplate resonators with three-dimensional heat conduction. J. Mech. Sci. Technol. 33, 1796–1874 (2019) Wang, L.L., Li, X.P., Pan, W.P., Yang, Z.M., Xu, J.C.: Analysis of thermoelastic damping in bilayered rectangular microplate resonators with three-dimensional heat conduction. J. Mech. Sci. Technol. 33, 1796–1874 (2019)
22.
go back to reference Mirjavadi, S.S., Afshari, B.M., Shafiei, N.: Effects of temperature and porosity on the vibration behavior of two-dimensional functionally graded micro-scale Timoshenko beam. J. Vib. Control 24, 4211–4225 (2018)MathSciNetCrossRef Mirjavadi, S.S., Afshari, B.M., Shafiei, N.: Effects of temperature and porosity on the vibration behavior of two-dimensional functionally graded micro-scale Timoshenko beam. J. Vib. Control 24, 4211–4225 (2018)MathSciNetCrossRef
23.
go back to reference Sahmni, S., Safaei, B.: Nonlinear free vibration of bi-directional functionally graded micro/nano beams including nonlocal stress and microstructural strain gradient size effects. Thin Walled Struct. 140, 342–356 (2019)CrossRef Sahmni, S., Safaei, B.: Nonlinear free vibration of bi-directional functionally graded micro/nano beams including nonlocal stress and microstructural strain gradient size effects. Thin Walled Struct. 140, 342–356 (2019)CrossRef
24.
go back to reference Ke, L.L., Yang, J., Sritawat, K.: Axisymmetric nonlinear free vibration of size-dependent functionally graded annular microplates. Compos. Part B Eng. 53, 207–217 (2013)CrossRef Ke, L.L., Yang, J., Sritawat, K.: Axisymmetric nonlinear free vibration of size-dependent functionally graded annular microplates. Compos. Part B Eng. 53, 207–217 (2013)CrossRef
25.
go back to reference Eshraghi, I., Dag, S., Soltani, N.: Consideration of special variation of the length scale parameter in static and dynamic analysis of functionally graded annular and circular micro plates. Compos. Part B Eng. 78, 338–348 (2015)CrossRef Eshraghi, I., Dag, S., Soltani, N.: Consideration of special variation of the length scale parameter in static and dynamic analysis of functionally graded annular and circular micro plates. Compos. Part B Eng. 78, 338–348 (2015)CrossRef
26.
go back to reference Shojaeefard, M.H., Googarchin, H.S., Ghadiri, M.: Micro temperature-dependent FG porous plate: free vibration and thermal buckling analysis using modified couple stress theory with CPT and FST. Appl. Math. Model. 50, 633–655 (2017)MathSciNetCrossRef Shojaeefard, M.H., Googarchin, H.S., Ghadiri, M.: Micro temperature-dependent FG porous plate: free vibration and thermal buckling analysis using modified couple stress theory with CPT and FST. Appl. Math. Model. 50, 633–655 (2017)MathSciNetCrossRef
27.
go back to reference Jung, W.Y., Park, W.T., Han, S.C.: Bending and vibration analysis of S-FGM microplates embedded in Pasternak elastic medium using the modified couple stress theory. Int. J. Mech. Sci. 87, 150–162 (2014)CrossRef Jung, W.Y., Park, W.T., Han, S.C.: Bending and vibration analysis of S-FGM microplates embedded in Pasternak elastic medium using the modified couple stress theory. Int. J. Mech. Sci. 87, 150–162 (2014)CrossRef
28.
go back to reference Salehipour, H., Nahvi, H., Shahidi, A.R.: Exact closed-form free vibration analysis for functionally graded micro/nano plates based on modified couple stress and three-dimensional elasticity theories. Compos. Struct. 124, 283–291 (2015)CrossRef Salehipour, H., Nahvi, H., Shahidi, A.R.: Exact closed-form free vibration analysis for functionally graded micro/nano plates based on modified couple stress and three-dimensional elasticity theories. Compos. Struct. 124, 283–291 (2015)CrossRef
29.
go back to reference Joshi, P.V., Gupta, A.N., Jain, K., Salhotra, R., Rawani, A.M., Ramtekkar, G.D.: Effect of thermal environment on free vibration and buckling of partially cracked isotropic and FGM micro plates based on a non classical Kirchhoff’s plate theory: an analytical approach. Int. J. Mech. Sci. 131–132, 155–157 (2017)CrossRef Joshi, P.V., Gupta, A.N., Jain, K., Salhotra, R., Rawani, A.M., Ramtekkar, G.D.: Effect of thermal environment on free vibration and buckling of partially cracked isotropic and FGM micro plates based on a non classical Kirchhoff’s plate theory: an analytical approach. Int. J. Mech. Sci. 131–132, 155–157 (2017)CrossRef
30.
go back to reference Azizi, S., Ghazavi, M.R., Rezazadeh, G., Khade, S.E.: Thermo-elastic damping in a functionally graded piezoelectric micro-resonator. Int. J. Mech. Mater. Des. 11, 357–369 (2015)CrossRef Azizi, S., Ghazavi, M.R., Rezazadeh, G., Khade, S.E.: Thermo-elastic damping in a functionally graded piezoelectric micro-resonator. Int. J. Mech. Mater. Des. 11, 357–369 (2015)CrossRef
31.
go back to reference Zhong, Z.Y., Zhou, J.P., Zhang, H.L.: Thermoelastic damping in functionally graded microbeam resonators. IEEE Sens. J. 17, 3381–3390 (2017)CrossRef Zhong, Z.Y., Zhou, J.P., Zhang, H.L.: Thermoelastic damping in functionally graded microbeam resonators. IEEE Sens. J. 17, 3381–3390 (2017)CrossRef
32.
go back to reference Emami, A.A., Alibeigloo, A.: Exact solution for thermal damping of functionally graded Timoshenko microbeams. J. Therm. Stress. 39, 231–243 (2016)CrossRef Emami, A.A., Alibeigloo, A.: Exact solution for thermal damping of functionally graded Timoshenko microbeams. J. Therm. Stress. 39, 231–243 (2016)CrossRef
33.
go back to reference Emami, A.A., Alibeigloo, A.: Thermoelastic damping analysis of FG Mindlin microplates using strain gradient theory. J. Therm. Stress. 39, 1499–1522 (2016)CrossRef Emami, A.A., Alibeigloo, A.: Thermoelastic damping analysis of FG Mindlin microplates using strain gradient theory. J. Therm. Stress. 39, 1499–1522 (2016)CrossRef
34.
go back to reference Li, S.R., Xu, X., Chen, S.: Analysis of thermoelastic damping of functionally graded material beam resonators. Compos. Struct. 182, 728–736 (2017)CrossRef Li, S.R., Xu, X., Chen, S.: Analysis of thermoelastic damping of functionally graded material beam resonators. Compos. Struct. 182, 728–736 (2017)CrossRef
35.
go back to reference Li, S.R.S., Chen, S., Xiong, P.: Thermoelastic damping in functionally graded material circular micro plates. J. Therm. Stress. 41, 1396–1413 (2018)CrossRef Li, S.R.S., Chen, S., Xiong, P.: Thermoelastic damping in functionally graded material circular micro plates. J. Therm. Stress. 41, 1396–1413 (2018)CrossRef
36.
go back to reference Li, S.R., Wang, X., Batra, R.C.: Correspondence relations between deflection, buckling load, and frequencies of thin functionally graded material plates and those of corresponding homogeneous plates. J. Appl. Mech. 82, 11100618 (2015) Li, S.R., Wang, X., Batra, R.C.: Correspondence relations between deflection, buckling load, and frequencies of thin functionally graded material plates and those of corresponding homogeneous plates. J. Appl. Mech. 82, 11100618 (2015)
37.
go back to reference Nguyen-Thoi, T., Phung-Van, P., Nguyen-Xuan, H., Thai-Hoang, C.: A cell-based smoothed discrete shear gap method using triangular elements for static and free vibration analyses of Reissner–Mindlin plates. Int. J. Numer. Methods Eng. 91, 705–741 (2012)MathSciNetCrossRef Nguyen-Thoi, T., Phung-Van, P., Nguyen-Xuan, H., Thai-Hoang, C.: A cell-based smoothed discrete shear gap method using triangular elements for static and free vibration analyses of Reissner–Mindlin plates. Int. J. Numer. Methods Eng. 91, 705–741 (2012)MathSciNetCrossRef
38.
go back to reference Kumar, S., Ranjan, V., Jana, P.: Free vibration analysis of thin functionally graded rectangular plates using the dynamic stiffness method. Compos. Struct. 197, 39–53 (2018)CrossRef Kumar, S., Ranjan, V., Jana, P.: Free vibration analysis of thin functionally graded rectangular plates using the dynamic stiffness method. Compos. Struct. 197, 39–53 (2018)CrossRef
39.
go back to reference Leissa, A.W.: Vibration of Plates. SP-160, NASA: Washington, DC (1969) Leissa, A.W.: Vibration of Plates. SP-160, NASA: Washington, DC (1969)
Metadata
Title
Analysis of free vibration of functionally graded material micro-plates with thermoelastic damping
Authors
Shi-Rong Li
Hang-Kong Ma
Publication date
07-02-2020
Publisher
Springer Berlin Heidelberg
Published in
Archive of Applied Mechanics / Issue 6/2020
Print ISSN: 0939-1533
Electronic ISSN: 1432-0681
DOI
https://doi.org/10.1007/s00419-020-01664-9

Other articles of this Issue 6/2020

Archive of Applied Mechanics 6/2020 Go to the issue

Premium Partners