Skip to main content
Top

2018 | OriginalPaper | Chapter

Analysis of On Chip Optical Source Vertical Cavity Surface Emitting Laser (VCSEL)

Authors : Sandeep Dahiya, Suresh Kumar, B. K. Kaushik

Published in: Silicon Photonics & High Performance Computing

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The major developments in semiconductor laser technology, i.e., Vertical Cavity Surface Emitting Lasers (VCSELs), really revolutionized the field of semiconductor lasers and play a pivotal role in every walk of life such as science and technology, research and development, consumer and industrial environment, medical, military, surveillance, telecommunication, and a host of other applications. Although the development of lasers is pertinent to each other because of dependence on Distributed Bragg Reflector (DBR) mirrors, the devices under reference are normally supposed to be the most appropriate semiconductor lasers for their evident plentiful significances and applications. In modern age, the importance of VCSELs is reflected in fact that they have become the second largest production among all types of semiconductor lasers due to intrinsic structure features of array formation, coherent emission with small beam divergence, large output power, low-threshold operations, high modulation bandwidths, etc., tuned by electrical and temperature variations. In the present investigation, the electrical and optical characteristics of the state-of-the-art long-wavelength VCSEL at 1310 nm emission is analyzed with different apertures such as 20 and 12 µm. The authors observed that if the oxide aperture of the same device is reduced 20 to 12 µm, it obtained the incremental in the carrier and photon density rates and subsequently reduces the emitted power, threshold current, and gain of the devices. The present communication discusses the history, present status, and an exposure of some state-of-the-art performances with optimized results of VCSELs.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Hall RN, Fenner GE, Kingsley JD, Soltys TJ, Carlson RO (1962) Coherent light emission from GaAs junctions. Phys Rev Lett 9:366–369CrossRef Hall RN, Fenner GE, Kingsley JD, Soltys TJ, Carlson RO (1962) Coherent light emission from GaAs junctions. Phys Rev Lett 9:366–369CrossRef
2.
go back to reference Iga K (2000) Surface emitting laser-its birth and generation of new optoelectronics field. IEEE J Sel Top Quantum Electron 6(6):1201–1215CrossRef Iga K (2000) Surface emitting laser-its birth and generation of new optoelectronics field. IEEE J Sel Top Quantum Electron 6(6):1201–1215CrossRef
3.
go back to reference Soda H, Iga K, Kitahara C, Suematsu Y (1979) GaInAsP/InP surface emitting injection lasers. Jap J Appl Phys 18:2329–2330CrossRef Soda H, Iga K, Kitahara C, Suematsu Y (1979) GaInAsP/InP surface emitting injection lasers. Jap J Appl Phys 18:2329–2330CrossRef
4.
go back to reference Chow WW, Choquette KD, Crawford MH, Lear KL, Hadley GR (1997) Design, fabrication and performance of infrared and visible vertical-cavity surface emitting lasers. IEEE J Quantum Electron 33(10):1810–1823CrossRef Chow WW, Choquette KD, Crawford MH, Lear KL, Hadley GR (1997) Design, fabrication and performance of infrared and visible vertical-cavity surface emitting lasers. IEEE J Quantum Electron 33(10):1810–1823CrossRef
5.
go back to reference Koyama F, Kinoshita S, Iga K (1989) Room-temperature continuous wave lasing characteristics of GaAs vertical cavity surface-emitting laser. Appl Phys Lett 55:221–222CrossRef Koyama F, Kinoshita S, Iga K (1989) Room-temperature continuous wave lasing characteristics of GaAs vertical cavity surface-emitting laser. Appl Phys Lett 55:221–222CrossRef
6.
go back to reference Jewell J, Harbison J, Scherer A, Lee Y, Florez L (1991) Vertical-Cavity surface emitting lasers: Design, growth, fabrication, characterization. IEEE J Quantum Electron 27(6):1332–1346CrossRef Jewell J, Harbison J, Scherer A, Lee Y, Florez L (1991) Vertical-Cavity surface emitting lasers: Design, growth, fabrication, characterization. IEEE J Quantum Electron 27(6):1332–1346CrossRef
7.
go back to reference Babic DI, Streubel K, Mirin RP, Margalit NM, Bowers JE, Hu EL (1995) Room temperature continuous wave operation of 1.54 μm vertical cavity lasers. IEEE Photonics Technol Lett 7(11):1225–1227CrossRef Babic DI, Streubel K, Mirin RP, Margalit NM, Bowers JE, Hu EL (1995) Room temperature continuous wave operation of 1.54 μm vertical cavity lasers. IEEE Photonics Technol Lett 7(11):1225–1227CrossRef
8.
go back to reference Piprek J, Babic DI, Bowers JE (1996) Numerical analysis of 1.54 um double-fused vertical-cavity lasers operating continuous-wave up to 33 oC. Appl Phys Lett 68(19):2630–2632CrossRef Piprek J, Babic DI, Bowers JE (1996) Numerical analysis of 1.54 um double-fused vertical-cavity lasers operating continuous-wave up to 33 oC. Appl Phys Lett 68(19):2630–2632CrossRef
9.
go back to reference Jayaraman V, Geske JC, McDougal MH, Peters FH, Lowes TD, Char TD (1998) Uniform threshold, continuous wave, single mode 1300 nm vertical cavity lasers from 0 to 70 °C. Electron Lett 34(14):1405–1407CrossRef Jayaraman V, Geske JC, McDougal MH, Peters FH, Lowes TD, Char TD (1998) Uniform threshold, continuous wave, single mode 1300 nm vertical cavity lasers from 0 to 70 °C. Electron Lett 34(14):1405–1407CrossRef
10.
go back to reference Qian Y et al (1997) Long wavelength (1.3 μm) vertical cavity surface emitting lasers with a wafer bonded mirror and an oxygen implanted confinement region. Appl Phys Lett 71(1):25–27CrossRef Qian Y et al (1997) Long wavelength (1.3 μm) vertical cavity surface emitting lasers with a wafer bonded mirror and an oxygen implanted confinement region. Appl Phys Lett 71(1):25–27CrossRef
11.
go back to reference Lee Y, Jewell J, Scherer A, McCall S, Harbison J, Fiorez L (1989) Room-temperature continuous-wave vertical cavity single-quantum-well microlaser diodes. Electron Lett 25(20):1377–1378CrossRef Lee Y, Jewell J, Scherer A, McCall S, Harbison J, Fiorez L (1989) Room-temperature continuous-wave vertical cavity single-quantum-well microlaser diodes. Electron Lett 25(20):1377–1378CrossRef
12.
go back to reference Baba T, Yogo Y, Suzuki K, Koyama F, Iga K (1993) Near room temperature continuous wave lasing characteristics of GaInAsP/InP Surface Emitting Laser. Electron Lett 29(10):913–915CrossRef Baba T, Yogo Y, Suzuki K, Koyama F, Iga K (1993) Near room temperature continuous wave lasing characteristics of GaInAsP/InP Surface Emitting Laser. Electron Lett 29(10):913–915CrossRef
13.
go back to reference Grabherr M, Weigl B, Riener G, Ebeling K (1996) Comparison of proton implanted and selectively oxidized vetical-cavity surface-emitting lasers. In: Conference on lasers and electron-optics, CLEO/Europe, pp 165 Grabherr M, Weigl B, Riener G, Ebeling K (1996) Comparison of proton implanted and selectively oxidized vetical-cavity surface-emitting lasers. In: Conference on lasers and electron-optics, CLEO/Europe, pp 165
14.
go back to reference Hayashi Y, Mukaihara T, Hatori N, Ohnoki N, Matsutani A, Koyama F, Iga K (1995) Record low-threshold index guided InGaAs/GaAlAs vertical-cavity surface-emitting laser with a native oxide confinement structure. Electron Lett 31:560–562CrossRef Hayashi Y, Mukaihara T, Hatori N, Ohnoki N, Matsutani A, Koyama F, Iga K (1995) Record low-threshold index guided InGaAs/GaAlAs vertical-cavity surface-emitting laser with a native oxide confinement structure. Electron Lett 31:560–562CrossRef
15.
go back to reference Lear KL, Choquette KD, Schneider RP Jr, Kilcoyne SP, Geib KM (1995) Selectively oxidized vertical cavity surface emitting laser with 50% power conversion efficiency. Electron Lett 31:208–209CrossRef Lear KL, Choquette KD, Schneider RP Jr, Kilcoyne SP, Geib KM (1995) Selectively oxidized vertical cavity surface emitting laser with 50% power conversion efficiency. Electron Lett 31:208–209CrossRef
16.
go back to reference vander Ziel JP, Ilegems M (1975) Multilayer GaAs-Al0.3Ga0.7As dielectric quarter wave stacks grown by molecular beam epitaxy. Appl Optics 14:2627–2630CrossRef vander Ziel JP, Ilegems M (1975) Multilayer GaAs-Al0.3Ga0.7As dielectric quarter wave stacks grown by molecular beam epitaxy. Appl Optics 14:2627–2630CrossRef
17.
go back to reference Geels RS et al (1991) InGaAs vertical-cavity surface-emitting lasers. IEEE J Quantum Electron 27(6):1359–1367CrossRef Geels RS et al (1991) InGaAs vertical-cavity surface-emitting lasers. IEEE J Quantum Electron 27(6):1359–1367CrossRef
18.
go back to reference Huffaker DL, Deppe DG, Kumar K, Rogers TJ (1994) Native oxide defined ring contact for low threshold vertical cavity lasers. Appl Phys Lett 65:97–99CrossRef Huffaker DL, Deppe DG, Kumar K, Rogers TJ (1994) Native oxide defined ring contact for low threshold vertical cavity lasers. Appl Phys Lett 65:97–99CrossRef
19.
go back to reference Choquette KD, Schneider RP, Lear KL, Geib KM (1994) Low threshold voltage vertical-cavity lasers fabricated by selective oxidation. Electron Lett 30(24):2043–2044CrossRef Choquette KD, Schneider RP, Lear KL, Geib KM (1994) Low threshold voltage vertical-cavity lasers fabricated by selective oxidation. Electron Lett 30(24):2043–2044CrossRef
20.
go back to reference Lear KL, Mar A, Choquette KD, Kilcoyne SP, Schneider RP, Geib KM (1996) High frequency modulation of oxide confined vertical cavity surface emitting lasers. Electron Lett 32:457–458CrossRef Lear KL, Mar A, Choquette KD, Kilcoyne SP, Schneider RP, Geib KM (1996) High frequency modulation of oxide confined vertical cavity surface emitting lasers. Electron Lett 32:457–458CrossRef
21.
go back to reference Koyama F (2006) Recent advances of VCSEL photonics. J Light wave Technol 24:4502–4513CrossRef Koyama F (2006) Recent advances of VCSEL photonics. J Light wave Technol 24:4502–4513CrossRef
22.
go back to reference Willner AE et al (2012) Optics and photonics: key enabling technologies. Proceeding IEEE 100:1604–1643CrossRef Willner AE et al (2012) Optics and photonics: key enabling technologies. Proceeding IEEE 100:1604–1643CrossRef
23.
go back to reference Zervas MN, et al (2014) High power fiber lasers: a review. IEEE J Sel Top Quantum Electron 20(5) Zervas MN, et al (2014) High power fiber lasers: a review. IEEE J Sel Top Quantum Electron 20(5)
24.
go back to reference Richardson DJ et al (2010) High power fiber lasers: current status and future prospective. J Opt Soc Amer B 27:B63–B92CrossRef Richardson DJ et al (2010) High power fiber lasers: current status and future prospective. J Opt Soc Amer B 27:B63–B92CrossRef
25.
go back to reference Michalzik R, Ebeling KJ (2003) Operating principles of VCSELs. Univ of Ulm, Optoelectronics Department Michalzik R, Ebeling KJ (2003) Operating principles of VCSELs. Univ of Ulm, Optoelectronics Department
26.
go back to reference Tell B, Lee YH, Brown Goebeler KF, Jewell JL, Leigenguth RE, Asom MT, Livescu G, Luther L, Mattera VD (1990) High-power CW vertical-cavity top surface-emitting GaAs quantum well lasers. Appl Phys Lett 57(18):1855–1857CrossRef Tell B, Lee YH, Brown Goebeler KF, Jewell JL, Leigenguth RE, Asom MT, Livescu G, Luther L, Mattera VD (1990) High-power CW vertical-cavity top surface-emitting GaAs quantum well lasers. Appl Phys Lett 57(18):1855–1857CrossRef
27.
go back to reference Kasten AM, Tan MP, Sulkin JD, Leisher PO, Choquette KD (2008) Photonic crystal vertical cavity lasers with wavelength-independent single-mode behavior. IEEE Photon Technol Lett 20(23):2010–2012CrossRef Kasten AM, Tan MP, Sulkin JD, Leisher PO, Choquette KD (2008) Photonic crystal vertical cavity lasers with wavelength-independent single-mode behavior. IEEE Photon Technol Lett 20(23):2010–2012CrossRef
28.
go back to reference Ragunathan G (2014) Design and fabrication of vertical external cavity surface-emitting lasers. Thesis for the degree of Master of Science in Electrical and Computer Engineering, University of Illinois at Urbana-Champaign Ragunathan G (2014) Design and fabrication of vertical external cavity surface-emitting lasers. Thesis for the degree of Master of Science in Electrical and Computer Engineering, University of Illinois at Urbana-Champaign
29.
go back to reference Larsson A, Gustavsson JS (2013) VCSELs: fundamentals, technology and applications of vertical-cavity surface-emitting lasers. Springer-Verlag, Berlin, Germany ch. 4, pp 119–144 Larsson A, Gustavsson JS (2013) VCSELs: fundamentals, technology and applications of vertical-cavity surface-emitting lasers. Springer-Verlag, Berlin, Germany ch. 4, pp 119–144
30.
go back to reference Saha AK, Islam S (2009) An improved model for computing the reflectivity of a AlAs/GaAs based distributed bragg reflector and vertical cavity surface emitting laser. Optical Quantum Electron 41:873–882CrossRef Saha AK, Islam S (2009) An improved model for computing the reflectivity of a AlAs/GaAs based distributed bragg reflector and vertical cavity surface emitting laser. Optical Quantum Electron 41:873–882CrossRef
31.
go back to reference Leonardis FD et al (2007) Improved simulation of VCSEL distributed bragg reflectors. J Comput Electron 6:289–292CrossRef Leonardis FD et al (2007) Improved simulation of VCSEL distributed bragg reflectors. J Comput Electron 6:289–292CrossRef
32.
go back to reference Mitani SM, Choudhury PK, Alias MS (2007) Design and analysis of a GaAs-based 850 nm vertical cavity surface emitting laser with different doping in the reflection regions. J Russian Laser Res 28(6):610–618CrossRef Mitani SM, Choudhury PK, Alias MS (2007) Design and analysis of a GaAs-based 850 nm vertical cavity surface emitting laser with different doping in the reflection regions. J Russian Laser Res 28(6):610–618CrossRef
33.
go back to reference Gronenborn S et al (2011) High-power VCSELs with a rectangular aperture. Appl Phys B Laser Opt-Springer 105:783–792CrossRef Gronenborn S et al (2011) High-power VCSELs with a rectangular aperture. Appl Phys B Laser Opt-Springer 105:783–792CrossRef
34.
go back to reference Seurin JF et al (2013) High power red VCSEL arrays. Proceeding of SPIE 8639:86390O-1–86390O-9CrossRef Seurin JF et al (2013) High power red VCSEL arrays. Proceeding of SPIE 8639:86390O-1–86390O-9CrossRef
35.
go back to reference Alias MS et al (2009) Comprehensive uniformity analysis of GaAs-based VCSEL epiwafer by utilizing the on-wafer test capability. J Russ laser Res 30(4):368–375CrossRef Alias MS et al (2009) Comprehensive uniformity analysis of GaAs-based VCSEL epiwafer by utilizing the on-wafer test capability. J Russ laser Res 30(4):368–375CrossRef
36.
go back to reference Huffaker DL, Graham LA, Deppe DG (1996) Fabrication of high packaging density vertical cavity surface emitting laser arrays using selective oxidation. IEEE Photon Techn Lett 8:596–598CrossRef Huffaker DL, Graham LA, Deppe DG (1996) Fabrication of high packaging density vertical cavity surface emitting laser arrays using selective oxidation. IEEE Photon Techn Lett 8:596–598CrossRef
37.
go back to reference Sinzinger S, Jahns J (2003) Microoptics, 2nd edn. WILEY-VCH GmbH & Co., WeinheimCrossRef Sinzinger S, Jahns J (2003) Microoptics, 2nd edn. WILEY-VCH GmbH & Co., WeinheimCrossRef
38.
go back to reference Baili G et al (2014) Ultralow noise and high-power VCSEL for high dynamic range and broadband RF/Optical links. J Light wave Technol 32(20):3489–3494CrossRef Baili G et al (2014) Ultralow noise and high-power VCSEL for high dynamic range and broadband RF/Optical links. J Light wave Technol 32(20):3489–3494CrossRef
39.
go back to reference Iga K (2008) Vertical Cavity Surface Emitting Laser: its conceptions and evolution. Jpn J Appl Phys 47:1–10CrossRef Iga K (2008) Vertical Cavity Surface Emitting Laser: its conceptions and evolution. Jpn J Appl Phys 47:1–10CrossRef
40.
go back to reference Tayahi MB, Dutta NK, Hobson WS, Vakhshoori D, Lopata J, Wynn J (1997) High power InGaAs/GaAsP/lnGaP surface emitting laser. Electron Lett 33(21):1794–1795CrossRef Tayahi MB, Dutta NK, Hobson WS, Vakhshoori D, Lopata J, Wynn J (1997) High power InGaAs/GaAsP/lnGaP surface emitting laser. Electron Lett 33(21):1794–1795CrossRef
41.
go back to reference Chang C-H, Chrostowski L, Chang-Hasnain CJ (2003) Injection locking of VCSELs. IEEE J Sel Top Quantum Electron 9(5):1386–1393CrossRef Chang C-H, Chrostowski L, Chang-Hasnain CJ (2003) Injection locking of VCSELs. IEEE J Sel Top Quantum Electron 9(5):1386–1393CrossRef
42.
go back to reference Margalit NM, Zhang SZ, Bowers JE (1997) Vertical cavity lasers for telecom applications. IEEE Communications Magazine, Newyork, pp 164–170 Margalit NM, Zhang SZ, Bowers JE (1997) Vertical cavity lasers for telecom applications. IEEE Communications Magazine, Newyork, pp 164–170
43.
go back to reference Liu JJ, Kalayjian Z, Riely B, Chang W, Simonis GJ (2003) Alyssa Apsel and Andreas Andreou, multichannel ultrathin silicon-on-sapphire optical interconnects. IEEE J. Sel Top Quantum Electron 9(2):380–386CrossRef Liu JJ, Kalayjian Z, Riely B, Chang W, Simonis GJ (2003) Alyssa Apsel and Andreas Andreou, multichannel ultrathin silicon-on-sapphire optical interconnects. IEEE J. Sel Top Quantum Electron 9(2):380–386CrossRef
44.
go back to reference Yu SF (2003) Analysis and design of vertical cavity surface emitting laser. Wiley Yu SF (2003) Analysis and design of vertical cavity surface emitting laser. Wiley
45.
go back to reference Lamy JM, Boyer Richard S, Levallois C, Paranthoen C, Folliot H, Chevalier N, Le Corre A, Loualiche S (2008) Design of an InGaAs/InP 1.55 um electrically pumped VCSEL. Opt Quant Electron 40:1193–1198CrossRef Lamy JM, Boyer Richard S, Levallois C, Paranthoen C, Folliot H, Chevalier N, Le Corre A, Loualiche S (2008) Design of an InGaAs/InP 1.55 um electrically pumped VCSEL. Opt Quant Electron 40:1193–1198CrossRef
46.
go back to reference Grabherr M, Gerlach P, King R, Jager R (2009) Integrated photodiodes complement the VCSEL platform. Proc of SPIE 7229, pp 72290E 1–9 Grabherr M, Gerlach P, King R, Jager R (2009) Integrated photodiodes complement the VCSEL platform. Proc of SPIE 7229, pp 72290E 1–9
47.
go back to reference Larsson A (2011) Advances in VCSELs for communication and sensing. IEEE J Sel Top Quantum Electron 17:1552–1567CrossRef Larsson A (2011) Advances in VCSELs for communication and sensing. IEEE J Sel Top Quantum Electron 17:1552–1567CrossRef
48.
go back to reference Birkbeck AL et al (2003) VCSEL arrays as Micromanipulators in chip-based Biosystems. Biomed Microdevices 5(1):47–54CrossRef Birkbeck AL et al (2003) VCSEL arrays as Micromanipulators in chip-based Biosystems. Biomed Microdevices 5(1):47–54CrossRef
49.
go back to reference Johnson K, Brenner MH, Hogan W, Dummer M (2012) Advances in red VCSEL technology. Advances in Optical Technologies, Special Issue on Recent Advances in Semiconductor Surface-Emitting Lasers, Article ID 569379 Johnson K, Brenner MH, Hogan W, Dummer M (2012) Advances in red VCSEL technology. Advances in Optical Technologies, Special Issue on Recent Advances in Semiconductor Surface-Emitting Lasers, Article ID 569379
50.
go back to reference Challener WA et al (2009) Gage, Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer. Nat Photon 3:220–224CrossRef Challener WA et al (2009) Gage, Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer. Nat Photon 3:220–224CrossRef
51.
go back to reference Ukaegbu IA et al (2013) Performance analysis of vertical and horizontal transmitter array modules using short and long wavelength VCSELs for optical interconnects. IEEE Trans Components, Packaging and Manufacturing Technol 3(5):740–748CrossRef Ukaegbu IA et al (2013) Performance analysis of vertical and horizontal transmitter array modules using short and long wavelength VCSELs for optical interconnects. IEEE Trans Components, Packaging and Manufacturing Technol 3(5):740–748CrossRef
52.
go back to reference Seeds AJ, Williams KJ (2006) Microwave photonics. J Lightwave Technol 24(12):4628–4641CrossRef Seeds AJ, Williams KJ (2006) Microwave photonics. J Lightwave Technol 24(12):4628–4641CrossRef
53.
go back to reference Chevallier C, Fressengeas N, Genty F, Jacquet J (2012) Robust design of Si/Si3N4 high contrast grating mirror for mid-infrared VCSEL application. Optical Quantum Electron 44:169–174CrossRef Chevallier C, Fressengeas N, Genty F, Jacquet J (2012) Robust design of Si/Si3N4 high contrast grating mirror for mid-infrared VCSEL application. Optical Quantum Electron 44:169–174CrossRef
54.
go back to reference Haurylau M et al (2007) On-chip optical interconnect roadmap: challenges and critical directions. IEEE J Sel Top Quantum Electron 12(6):1699–1705CrossRef Haurylau M et al (2007) On-chip optical interconnect roadmap: challenges and critical directions. IEEE J Sel Top Quantum Electron 12(6):1699–1705CrossRef
55.
go back to reference Menon PS, Kandiah K, Majlis BY, Shaari S (2011) Comparison of Mesa and Device Diameter Variation in Double Wafer-Fused Multi Quantum-Well, Long-Wavelength, Vertical Cavity Surface Emitting Lasers. Sains Malaysiana 40(6):631–636 Menon PS, Kandiah K, Majlis BY, Shaari S (2011) Comparison of Mesa and Device Diameter Variation in Double Wafer-Fused Multi Quantum-Well, Long-Wavelength, Vertical Cavity Surface Emitting Lasers. Sains Malaysiana 40(6):631–636
56.
go back to reference Ivanov PS, Rorison JM (2010) Theoretical investigation of static and dynamic characteristics of vertical cavity surface emitting lasers with incorporated two-dimensional photonic crystals. Opt Quantum Electron 42:193–213CrossRef Ivanov PS, Rorison JM (2010) Theoretical investigation of static and dynamic characteristics of vertical cavity surface emitting lasers with incorporated two-dimensional photonic crystals. Opt Quantum Electron 42:193–213CrossRef
57.
go back to reference Rashed Ahmed Nabih Zaki, Metawe Mohamed A (2013) Operation performance characteristics of vertical cavity surface emitting lasers (VCSELs) under high thermal neutron irradiated fields. J Rus Laser Res 34(1):1–7CrossRef Rashed Ahmed Nabih Zaki, Metawe Mohamed A (2013) Operation performance characteristics of vertical cavity surface emitting lasers (VCSELs) under high thermal neutron irradiated fields. J Rus Laser Res 34(1):1–7CrossRef
Metadata
Title
Analysis of On Chip Optical Source Vertical Cavity Surface Emitting Laser (VCSEL)
Authors
Sandeep Dahiya
Suresh Kumar
B. K. Kaushik
Copyright Year
2018
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-7656-5_8