Skip to main content
Top
Published in: Acoustical Physics 6/2022

01-12-2022 | ATMOSPHERIC AND AEROACOUSTICS

Analysis of Secondary Sound Emission in an Acoustic Analogy with a Propagation Operator Containing Vortex Modes

Authors: V. F. Kopiev, S. A. Chernyshev

Published in: Acoustical Physics | Issue 6/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, we analyze the acoustic analogy method in relation to the sound radiation of a turbulent subsonic jet. This method of describing aerodynamic sound generation by turbulent flows is based on the use of a linear propagation operator with a random source on the right side. The main problem here is the choice of an effective way to separate the left side of the equation, which is responsible for the propagation of sound waves, and the right part, which is responsible for sound generation, so that the noise calculation result corresponds to experimental data and physical ideas about noise generation by turbulence. One of the unsolved problems of the approach, which is common in most acoustic analogies, is the problem of the so-called “shear noise” associated with the excitation of shear flow disturbances by sources and the additional contribution of these disturbances to sound radiation. It is still unclear whether the shear component of the noise is a reflection of real physical processes or is associated with the transformation of equations and inaccurate modeling of sources. Here, within the framework of the problem formulated above, we consider an acoustic analogy, in which the linearized Euler equations are used as the propagation operator. In this description, the propagation operator contains vortex modes, which leads to the appearance of a shear noise component that arises due to the pumping of vortex disturbances by the sources. When modeling sound sources, hypotheses about the quadrupole nature isotropy of sound sources, as well as the spatial uncorrelation of sound source production, are used. To validate the model, the measurement data of the sound emission of the jet using the azimuthal decomposition method are used. The comparison of the model and experiment indicates the absence of a shear component in the jet noise. This makes it possible to conclude that the idea of pumping linear vortex perturbations of the mean flow by nonlinear turbulent pulsations that is used in the considered acoustic analogy does not correspond to the real mechanism of noise generation by a turbulent jet. Possible causes of the discrepancy between the model and the data of acoustic measurements are analyzed. Possible ways of solving this problem, which make it possible to effectively separate the left side of the equation that is responsible for the propagation of sound waves and the right nonlinear part that is responsible for sound generation are considered.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference M. J. Lighthill, Proc. R. Soc. Ser. A 211, 564 (1952). M. J. Lighthill, Proc. R. Soc. Ser. A 211, 564 (1952).
2.
go back to reference D. G. Crighton, in Modern Hydrodynamics. Achievements and Problems (Mir, Moscow, 1984), p. 359 [in Russian]. D. G. Crighton, in Modern Hydrodynamics. Achievements and Problems (Mir, Moscow, 1984), p. 359 [in Russian].
3.
go back to reference A. G. Munin, V. M. Kuznetsov, and E. A. Leont’ev, Aerodynamic Sources of Noise (Mashinostroenie, Moscow, 1981) [in Russian]. A. G. Munin, V. M. Kuznetsov, and E. A. Leont’ev, Aerodynamic Sources of Noise (Mashinostroenie, Moscow, 1981) [in Russian].
4.
go back to reference M. L. Shur, P. R. Spalart, and M. Kh. Strelets, Int. J. Aeroacoust. 4 (3-4), 213 (2005).CrossRef M. L. Shur, P. R. Spalart, and M. Kh. Strelets, Int. J. Aeroacoust. 4 (3-4), 213 (2005).CrossRef
5.
go back to reference G. A. Faranosov, V. M. Goloviznin, S. A. Karabasov, V. G. Kondakov, V. F. Kopiev, and M. A. Zaitsev, Comput. Fluids 88, 165 (2013).CrossRef G. A. Faranosov, V. M. Goloviznin, S. A. Karabasov, V. G. Kondakov, V. F. Kopiev, and M. A. Zaitsev, Comput. Fluids 88, 165 (2013).CrossRef
8.
go back to reference V. F. Kopiev, N. N. Ostrikov, V. A. Kopiev, I. V. Belyaev, and G. A. Faranosov, in Proc. 49th AIAA Aerospace Sci. Meeting Including the New Horizons Forum and Aerospace Exposition (Orrlando, FL, Jan. 4–7, 2011), Paper No. AIAA 2011-973. V. F. Kopiev, N. N. Ostrikov, V. A. Kopiev, I. V. Belyaev, and G. A. Faranosov, in Proc. 49th AIAA Aerospace Sci. Meeting Including the New Horizons Forum and Aerospace Exposition (Orrlando, FL, Jan. 4–7, 2011), Paper No. AIAA 2011-973.
12.
go back to reference A. Towne, T. Colonius, P. Jordan, A. V. Cavalieri, and G. A. Bres, in Proc. 21st AIAA/CEAS Aeroacoustics Conf. (Dallas, TX, 2015), Paper No. 2015-2217. A. Towne, T. Colonius, P. Jordan, A. V. Cavalieri, and G. A. Bres, in Proc. 21st AIAA/CEAS Aeroacoustics Conf. (Dallas, TX, 2015), Paper No. 2015-2217.
14.
go back to reference P. Morris and S. Boluriaan, in Proc. 10tht AIAA/CEAS Aeroacoustics Conf. (Manchester, 2004), Paper No. 2004-2977. P. Morris and S. Boluriaan, in Proc. 10tht AIAA/CEAS Aeroacoustics Conf. (Manchester, 2004), Paper No. 2004-2977.
16.
go back to reference S. A. Karabasov, M. Z. Afsar, T. P. Hynes, A. P. Dowling, W. A. McMullan, C. D. Pokora, G. J. Page, and J. J. McGuirk, AIAA J. 48 (7), 1312 (2010).ADSCrossRef S. A. Karabasov, M. Z. Afsar, T. P. Hynes, A. P. Dowling, W. A. McMullan, C. D. Pokora, G. J. Page, and J. J. McGuirk, AIAA J. 48 (7), 1312 (2010).ADSCrossRef
18.
19.
go back to reference V. Kopiev and S. Chernyshev, in Proc. 21st AIAA/CEAS Aeroacoustics Conf. (Dallas, TX, 2015), Paper No. 2015-3130. V. Kopiev and S. Chernyshev, in Proc. 21st AIAA/CEAS Aeroacoustics Conf. (Dallas, TX, 2015), Paper No. 2015-3130.
20.
go back to reference C. K. W. Tam, M. Golebiowski, and J. M. Seiner, in Proc. 2nd AIAA/CEAS Aeroacoustics Conf. (State College, PA, May 6–8, 1996), Paper No. 96-1716. C. K. W. Tam, M. Golebiowski, and J. M. Seiner, in Proc. 2nd AIAA/CEAS Aeroacoustics Conf. (State College, PA, May 6–8, 1996), Paper No. 96-1716.
21.
22.
go back to reference G. Faranosov, V. Kopiev, I. Belyaev, O. Bychkov, and S. Chernyshev, in Proc. 23rd AIAA/CEAS Aeroacoustics Conf. (Denver, CO, 2017), Paper No. 2017-3527. G. Faranosov, V. Kopiev, I. Belyaev, O. Bychkov, and S. Chernyshev, in Proc. 23rd AIAA/CEAS Aeroacoustics Conf. (Denver, CO, 2017), Paper No. 2017-3527.
23.
go back to reference V. Kopiev, M. Zaitsev, S. Chernyshev, and N. Ostrikov, in Proc. 13th AIAA/CEAS Aeroacoustics Conf. (28th AIAA Aeroacoustics Conf.) (Rome, May 21–23, 2007), Paper No. 2007-3647. V. Kopiev, M. Zaitsev, S. Chernyshev, and N. Ostrikov, in Proc. 13th AIAA/CEAS Aeroacoustics Conf. (28th AIAA Aeroacoustics Conf.) (Rome, May 21–23, 2007), Paper No. 2007-3647.
24.
go back to reference V. Kopiev, M. Zaitsev, S. Chernyshev, and N. Ostrikov, Int. J. Aeroacoust. 6 (4), 375 (2007).CrossRef V. Kopiev, M. Zaitsev, S. Chernyshev, and N. Ostrikov, Int. J. Aeroacoust. 6 (4), 375 (2007).CrossRef
26.
28.
go back to reference U. Frisch, Turbulence: The Legacy of A. N. Kolmogorov (Cambridge Univ. Press, 1996; FAZIS, Moscow, 1998). U. Frisch, Turbulence: The Legacy of A. N. Kolmogorov (Cambridge Univ. Press, 1996; FAZIS, Moscow, 1998).
29.
34.
go back to reference H. S. Ribner, J. Sound Vib. 52 (1), 121 (1977). H. S. Ribner, J. Sound Vib. 52 (1), 121 (1977).
35.
go back to reference J. B. Freund, in Proc. 8th AIAA/CEAS Aeroacoustics Conf. & Exhibition (Breckenridge, CO, 2002), Paper No. 2002-2423. J. B. Freund, in Proc. 8th AIAA/CEAS Aeroacoustics Conf. & Exhibition (Breckenridge, CO, 2002), Paper No. 2002-2423.
36.
go back to reference P. Jordan and Y. Gervais, J. Sound Vib. 279, 529 (2005). P. Jordan and Y. Gervais, J. Sound Vib. 279, 529 (2005).
37.
39.
go back to reference G. M. Lilley, Aeronautical Research Council Rep. No. ARC-20376 (1958). G. M. Lilley, Aeronautical Research Council Rep. No. ARC-20376 (1958).
42.
go back to reference M. E. Goldstein and W. L. Howes, NASA Technical Note D-7158 (1973). M. E. Goldstein and W. L. Howes, NASA Technical Note D-7158 (1973).
43.
go back to reference A. N. Kolmogorov, Dokl. Akad. Nauk SSSR 30, 9 (1941). A. N. Kolmogorov, Dokl. Akad. Nauk SSSR 30, 9 (1941).
44.
go back to reference V. F. Kopiev, M. Yu. Zaitsev, S. A. Velichko, A. N. Kotova, and I. V. Belyaev, in Proc. 14th AIAA/CEAS Aeroacoustics Conf. (29th AIAA Aeroacoustics Conf.) (Vancouver, 2008). V. F. Kopiev, M. Yu. Zaitsev, S. A. Velichko, A. N. Kotova, and I. V. Belyaev, in Proc. 14th AIAA/CEAS Aeroacoustics Conf. (29th AIAA Aeroacoustics Conf.) (Vancouver, 2008).
45.
go back to reference V. F. Kopiev, M. Yu. Zaitsev, S. A. Chernyshev, and A. N. Kotova, in Proc. 14th AIAA/CEAS Aeroacoustics Conf. and Exhibition (Bellevue, WA, 1999), Paper No. 99-1839. V. F. Kopiev, M. Yu. Zaitsev, S. A. Chernyshev, and A. N. Kotova, in Proc. 14th AIAA/CEAS Aeroacoustics Conf. and Exhibition (Bellevue, WA, 1999), Paper No. 99-1839.
47.
go back to reference A. G. Munin and V. E. Kvitka, Aviation Acoustics (Mashinostroenie, Moscow, 1973), p. 448 [in Russian]. A. G. Munin and V. E. Kvitka, Aviation Acoustics (Mashinostroenie, Moscow, 1973), p. 448 [in Russian].
48.
go back to reference P. J. Morris and K. B. M. Q. Zaman, J. Sound Vib. 329 (4), 394 (2010). P. J. Morris and K. B. M. Q. Zaman, J. Sound Vib. 329 (4), 394 (2010).
49.
go back to reference R. Ewert, in Proc. 13th AIAA/CEAS Aeroacoustics Conf. (28th AIAA Aeroacoustics Conf.) (Rome, 2007), Paper No. 2007-3506. R. Ewert, in Proc. 13th AIAA/CEAS Aeroacoustics Conf. (28th AIAA Aeroacoustics Conf.) (Rome, 2007), Paper No. 2007-3506.
51.
go back to reference V. A. Kop’ev and S. A. Chernyshev, Dokl. Russ. Akad. Nauk, Fiz., Tekh. Nauki 506 (1), 4 (2022). V. A. Kop’ev and S. A. Chernyshev, Dokl. Russ. Akad. Nauk, Fiz., Tekh. Nauki 506 (1), 4 (2022).
Metadata
Title
Analysis of Secondary Sound Emission in an Acoustic Analogy with a Propagation Operator Containing Vortex Modes
Authors
V. F. Kopiev
S. A. Chernyshev
Publication date
01-12-2022
Publisher
Pleiades Publishing
Published in
Acoustical Physics / Issue 6/2022
Print ISSN: 1063-7710
Electronic ISSN: 1562-6865
DOI
https://doi.org/10.1134/S1063771022060069

Other articles of this Issue 6/2022

Acoustical Physics 6/2022 Go to the issue

Premium Partners