Skip to main content
Erschienen in: Acoustical Physics 6/2022

01.12.2022 | ATMOSPHERIC AND AEROACOUSTICS

Analysis of Secondary Sound Emission in an Acoustic Analogy with a Propagation Operator Containing Vortex Modes

verfasst von: V. F. Kopiev, S. A. Chernyshev

Erschienen in: Acoustical Physics | Ausgabe 6/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we analyze the acoustic analogy method in relation to the sound radiation of a turbulent subsonic jet. This method of describing aerodynamic sound generation by turbulent flows is based on the use of a linear propagation operator with a random source on the right side. The main problem here is the choice of an effective way to separate the left side of the equation, which is responsible for the propagation of sound waves, and the right part, which is responsible for sound generation, so that the noise calculation result corresponds to experimental data and physical ideas about noise generation by turbulence. One of the unsolved problems of the approach, which is common in most acoustic analogies, is the problem of the so-called “shear noise” associated with the excitation of shear flow disturbances by sources and the additional contribution of these disturbances to sound radiation. It is still unclear whether the shear component of the noise is a reflection of real physical processes or is associated with the transformation of equations and inaccurate modeling of sources. Here, within the framework of the problem formulated above, we consider an acoustic analogy, in which the linearized Euler equations are used as the propagation operator. In this description, the propagation operator contains vortex modes, which leads to the appearance of a shear noise component that arises due to the pumping of vortex disturbances by the sources. When modeling sound sources, hypotheses about the quadrupole nature isotropy of sound sources, as well as the spatial uncorrelation of sound source production, are used. To validate the model, the measurement data of the sound emission of the jet using the azimuthal decomposition method are used. The comparison of the model and experiment indicates the absence of a shear component in the jet noise. This makes it possible to conclude that the idea of pumping linear vortex perturbations of the mean flow by nonlinear turbulent pulsations that is used in the considered acoustic analogy does not correspond to the real mechanism of noise generation by a turbulent jet. Possible causes of the discrepancy between the model and the data of acoustic measurements are analyzed. Possible ways of solving this problem, which make it possible to effectively separate the left side of the equation that is responsible for the propagation of sound waves and the right nonlinear part that is responsible for sound generation are considered.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat M. J. Lighthill, Proc. R. Soc. Ser. A 211, 564 (1952). M. J. Lighthill, Proc. R. Soc. Ser. A 211, 564 (1952).
2.
Zurück zum Zitat D. G. Crighton, in Modern Hydrodynamics. Achievements and Problems (Mir, Moscow, 1984), p. 359 [in Russian]. D. G. Crighton, in Modern Hydrodynamics. Achievements and Problems (Mir, Moscow, 1984), p. 359 [in Russian].
3.
Zurück zum Zitat A. G. Munin, V. M. Kuznetsov, and E. A. Leont’ev, Aerodynamic Sources of Noise (Mashinostroenie, Moscow, 1981) [in Russian]. A. G. Munin, V. M. Kuznetsov, and E. A. Leont’ev, Aerodynamic Sources of Noise (Mashinostroenie, Moscow, 1981) [in Russian].
4.
Zurück zum Zitat M. L. Shur, P. R. Spalart, and M. Kh. Strelets, Int. J. Aeroacoust. 4 (3-4), 213 (2005).CrossRef M. L. Shur, P. R. Spalart, and M. Kh. Strelets, Int. J. Aeroacoust. 4 (3-4), 213 (2005).CrossRef
5.
Zurück zum Zitat G. A. Faranosov, V. M. Goloviznin, S. A. Karabasov, V. G. Kondakov, V. F. Kopiev, and M. A. Zaitsev, Comput. Fluids 88, 165 (2013).CrossRef G. A. Faranosov, V. M. Goloviznin, S. A. Karabasov, V. G. Kondakov, V. F. Kopiev, and M. A. Zaitsev, Comput. Fluids 88, 165 (2013).CrossRef
6.
8.
Zurück zum Zitat V. F. Kopiev, N. N. Ostrikov, V. A. Kopiev, I. V. Belyaev, and G. A. Faranosov, in Proc. 49th AIAA Aerospace Sci. Meeting Including the New Horizons Forum and Aerospace Exposition (Orrlando, FL, Jan. 4–7, 2011), Paper No. AIAA 2011-973. V. F. Kopiev, N. N. Ostrikov, V. A. Kopiev, I. V. Belyaev, and G. A. Faranosov, in Proc. 49th AIAA Aerospace Sci. Meeting Including the New Horizons Forum and Aerospace Exposition (Orrlando, FL, Jan. 4–7, 2011), Paper No. AIAA 2011-973.
12.
Zurück zum Zitat A. Towne, T. Colonius, P. Jordan, A. V. Cavalieri, and G. A. Bres, in Proc. 21st AIAA/CEAS Aeroacoustics Conf. (Dallas, TX, 2015), Paper No. 2015-2217. A. Towne, T. Colonius, P. Jordan, A. V. Cavalieri, and G. A. Bres, in Proc. 21st AIAA/CEAS Aeroacoustics Conf. (Dallas, TX, 2015), Paper No. 2015-2217.
14.
Zurück zum Zitat P. Morris and S. Boluriaan, in Proc. 10tht AIAA/CEAS Aeroacoustics Conf. (Manchester, 2004), Paper No. 2004-2977. P. Morris and S. Boluriaan, in Proc. 10tht AIAA/CEAS Aeroacoustics Conf. (Manchester, 2004), Paper No. 2004-2977.
16.
Zurück zum Zitat S. A. Karabasov, M. Z. Afsar, T. P. Hynes, A. P. Dowling, W. A. McMullan, C. D. Pokora, G. J. Page, and J. J. McGuirk, AIAA J. 48 (7), 1312 (2010).ADSCrossRef S. A. Karabasov, M. Z. Afsar, T. P. Hynes, A. P. Dowling, W. A. McMullan, C. D. Pokora, G. J. Page, and J. J. McGuirk, AIAA J. 48 (7), 1312 (2010).ADSCrossRef
18.
Zurück zum Zitat V. Kopiev and S. Chernyshev, Int. J. Aeroacoust. 13 (1-2), 39 (2014).CrossRef V. Kopiev and S. Chernyshev, Int. J. Aeroacoust. 13 (1-2), 39 (2014).CrossRef
19.
Zurück zum Zitat V. Kopiev and S. Chernyshev, in Proc. 21st AIAA/CEAS Aeroacoustics Conf. (Dallas, TX, 2015), Paper No. 2015-3130. V. Kopiev and S. Chernyshev, in Proc. 21st AIAA/CEAS Aeroacoustics Conf. (Dallas, TX, 2015), Paper No. 2015-3130.
20.
Zurück zum Zitat C. K. W. Tam, M. Golebiowski, and J. M. Seiner, in Proc. 2nd AIAA/CEAS Aeroacoustics Conf. (State College, PA, May 6–8, 1996), Paper No. 96-1716. C. K. W. Tam, M. Golebiowski, and J. M. Seiner, in Proc. 2nd AIAA/CEAS Aeroacoustics Conf. (State College, PA, May 6–8, 1996), Paper No. 96-1716.
21.
22.
Zurück zum Zitat G. Faranosov, V. Kopiev, I. Belyaev, O. Bychkov, and S. Chernyshev, in Proc. 23rd AIAA/CEAS Aeroacoustics Conf. (Denver, CO, 2017), Paper No. 2017-3527. G. Faranosov, V. Kopiev, I. Belyaev, O. Bychkov, and S. Chernyshev, in Proc. 23rd AIAA/CEAS Aeroacoustics Conf. (Denver, CO, 2017), Paper No. 2017-3527.
23.
Zurück zum Zitat V. Kopiev, M. Zaitsev, S. Chernyshev, and N. Ostrikov, in Proc. 13th AIAA/CEAS Aeroacoustics Conf. (28th AIAA Aeroacoustics Conf.) (Rome, May 21–23, 2007), Paper No. 2007-3647. V. Kopiev, M. Zaitsev, S. Chernyshev, and N. Ostrikov, in Proc. 13th AIAA/CEAS Aeroacoustics Conf. (28th AIAA Aeroacoustics Conf.) (Rome, May 21–23, 2007), Paper No. 2007-3647.
24.
Zurück zum Zitat V. Kopiev, M. Zaitsev, S. Chernyshev, and N. Ostrikov, Int. J. Aeroacoust. 6 (4), 375 (2007).CrossRef V. Kopiev, M. Zaitsev, S. Chernyshev, and N. Ostrikov, Int. J. Aeroacoust. 6 (4), 375 (2007).CrossRef
26.
Zurück zum Zitat G. M. Lilley, AGARD CP-131 13, 1 (1974). G. M. Lilley, AGARD CP-131 13, 1 (1974).
28.
Zurück zum Zitat U. Frisch, Turbulence: The Legacy of A. N. Kolmogorov (Cambridge Univ. Press, 1996; FAZIS, Moscow, 1998). U. Frisch, Turbulence: The Legacy of A. N. Kolmogorov (Cambridge Univ. Press, 1996; FAZIS, Moscow, 1998).
29.
30.
34.
Zurück zum Zitat H. S. Ribner, J. Sound Vib. 52 (1), 121 (1977). H. S. Ribner, J. Sound Vib. 52 (1), 121 (1977).
35.
Zurück zum Zitat J. B. Freund, in Proc. 8th AIAA/CEAS Aeroacoustics Conf. & Exhibition (Breckenridge, CO, 2002), Paper No. 2002-2423. J. B. Freund, in Proc. 8th AIAA/CEAS Aeroacoustics Conf. & Exhibition (Breckenridge, CO, 2002), Paper No. 2002-2423.
36.
Zurück zum Zitat P. Jordan and Y. Gervais, J. Sound Vib. 279, 529 (2005). P. Jordan and Y. Gervais, J. Sound Vib. 279, 529 (2005).
37.
39.
Zurück zum Zitat G. M. Lilley, Aeronautical Research Council Rep. No. ARC-20376 (1958). G. M. Lilley, Aeronautical Research Council Rep. No. ARC-20376 (1958).
42.
Zurück zum Zitat M. E. Goldstein and W. L. Howes, NASA Technical Note D-7158 (1973). M. E. Goldstein and W. L. Howes, NASA Technical Note D-7158 (1973).
43.
Zurück zum Zitat A. N. Kolmogorov, Dokl. Akad. Nauk SSSR 30, 9 (1941). A. N. Kolmogorov, Dokl. Akad. Nauk SSSR 30, 9 (1941).
44.
Zurück zum Zitat V. F. Kopiev, M. Yu. Zaitsev, S. A. Velichko, A. N. Kotova, and I. V. Belyaev, in Proc. 14th AIAA/CEAS Aeroacoustics Conf. (29th AIAA Aeroacoustics Conf.) (Vancouver, 2008). V. F. Kopiev, M. Yu. Zaitsev, S. A. Velichko, A. N. Kotova, and I. V. Belyaev, in Proc. 14th AIAA/CEAS Aeroacoustics Conf. (29th AIAA Aeroacoustics Conf.) (Vancouver, 2008).
45.
Zurück zum Zitat V. F. Kopiev, M. Yu. Zaitsev, S. A. Chernyshev, and A. N. Kotova, in Proc. 14th AIAA/CEAS Aeroacoustics Conf. and Exhibition (Bellevue, WA, 1999), Paper No. 99-1839. V. F. Kopiev, M. Yu. Zaitsev, S. A. Chernyshev, and A. N. Kotova, in Proc. 14th AIAA/CEAS Aeroacoustics Conf. and Exhibition (Bellevue, WA, 1999), Paper No. 99-1839.
47.
Zurück zum Zitat A. G. Munin and V. E. Kvitka, Aviation Acoustics (Mashinostroenie, Moscow, 1973), p. 448 [in Russian]. A. G. Munin and V. E. Kvitka, Aviation Acoustics (Mashinostroenie, Moscow, 1973), p. 448 [in Russian].
48.
Zurück zum Zitat P. J. Morris and K. B. M. Q. Zaman, J. Sound Vib. 329 (4), 394 (2010). P. J. Morris and K. B. M. Q. Zaman, J. Sound Vib. 329 (4), 394 (2010).
49.
Zurück zum Zitat R. Ewert, in Proc. 13th AIAA/CEAS Aeroacoustics Conf. (28th AIAA Aeroacoustics Conf.) (Rome, 2007), Paper No. 2007-3506. R. Ewert, in Proc. 13th AIAA/CEAS Aeroacoustics Conf. (28th AIAA Aeroacoustics Conf.) (Rome, 2007), Paper No. 2007-3506.
51.
Zurück zum Zitat V. A. Kop’ev and S. A. Chernyshev, Dokl. Russ. Akad. Nauk, Fiz., Tekh. Nauki 506 (1), 4 (2022). V. A. Kop’ev and S. A. Chernyshev, Dokl. Russ. Akad. Nauk, Fiz., Tekh. Nauki 506 (1), 4 (2022).
Metadaten
Titel
Analysis of Secondary Sound Emission in an Acoustic Analogy with a Propagation Operator Containing Vortex Modes
verfasst von
V. F. Kopiev
S. A. Chernyshev
Publikationsdatum
01.12.2022
Verlag
Pleiades Publishing
Erschienen in
Acoustical Physics / Ausgabe 6/2022
Print ISSN: 1063-7710
Elektronische ISSN: 1562-6865
DOI
https://doi.org/10.1134/S1063771022060069

Weitere Artikel der Ausgabe 6/2022

Acoustical Physics 6/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.