Skip to main content
Top
Published in: Metallography, Microstructure, and Analysis 2/2017

31-03-2017 | Technical Article

Analysis of the Cu-Al Milling Stages Through the Microstructure Evolution Studied by TEM and SEM

Authors: M. F. Giordana, N. Muñoz-Vásquez, M. R. Esquivel, E. Zelaya

Published in: Metallography, Microstructure, and Analysis | Issue 2/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Mechanical alloying of Cu-16 at.%Al and Cu-30 at.%Al was performed using both a planetary and a horizontal milling devices. The starting powders were high-purity Cu and Al. The different stages of milling were identified and characterized as initial, intermediate, final, and completion. The obtained microstructures were investigated by scanning electron microscopy and transmission electron microscopy. The evolution of the microstructure was studied considering the particle size variation. A decrease in the particle size was found as the Al content increases. The evolution of the nanostructure was studied considering the grain size variation. No marked changes on the nanostructure were detected during milling regardless either the type of mill used or composition selected. Mean grain sizes’ values found were between 10 nm and 26 nm for each stage of milling. Power consumption of the milling process was calculated at laboratory scale to analyze the chances of a potential scaling up of the milling process. Starting aggregation state, microstructure and dominant phase changes, and evolution of mechanical alloying stages were considered. Performance of milling was compared to traditional high-temperature methods to compare the advantages and disadvantages of both synthesis methods.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference X. Mao, D. Li, Z. Wang, X. Zhao, L. Cai, Surface nanocrystallization by mechanical punching process for improving microstructure and properties of Cu30Ni alloy. Trans. Nonferrous Met. Soc. China 23, 1694–1700 (2013). doi:10.1016/S1003-6326(13)62650-3 CrossRef X. Mao, D. Li, Z. Wang, X. Zhao, L. Cai, Surface nanocrystallization by mechanical punching process for improving microstructure and properties of Cu30Ni alloy. Trans. Nonferrous Met. Soc. China 23, 1694–1700 (2013). doi:10.​1016/​S1003-6326(13)62650-3 CrossRef
3.
4.
5.
6.
8.
go back to reference M.K. Nazemi, S. Sheibani, F. Rashchi, V.M. Gonzalez-DelaCruz, A. Caballero, Preparation of nanostructured nickel aluminate spinel powder from spent NiO/Al2O3 catalyst by mechano-chemical synthesis. Adv. Powder Technol. 23, 833–838 (2012). doi:10.1016/j.apt.2011.11.004 CrossRef M.K. Nazemi, S. Sheibani, F. Rashchi, V.M. Gonzalez-DelaCruz, A. Caballero, Preparation of nanostructured nickel aluminate spinel powder from spent NiO/Al2O3 catalyst by mechano-chemical synthesis. Adv. Powder Technol. 23, 833–838 (2012). doi:10.​1016/​j.​apt.​2011.​11.​004 CrossRef
9.
go back to reference V. Umapathy, A. Manikandan, S. Arul Antony, P. Ramu, P. Neeraja, Structure, morphology and opto-magnetic properties of Bi2MoO6 nano-photocatalyst synthesized by sol–gel method. Trans. Nonferrous Met. Soc. China 25, 3271–3278 (2015). doi:10.1016/S1003-6326(15)63948-6 CrossRef V. Umapathy, A. Manikandan, S. Arul Antony, P. Ramu, P. Neeraja, Structure, morphology and opto-magnetic properties of Bi2MoO6 nano-photocatalyst synthesized by sol–gel method. Trans. Nonferrous Met. Soc. China 25, 3271–3278 (2015). doi:10.​1016/​S1003-6326(15)63948-6 CrossRef
14.
go back to reference S. Pourkhorshidi, N. Parvin, M.S. Kenevisi, M. Naeimi, H. Ebrahimnia Khaniki, A study on the microstructure and properties of Cu-based shape memory alloy produced by hot extrusion of mechanically alloyed powders. Mater. Sci. Eng., A 556, 658–663 (2012). doi:10.1016/j.msea.2012.07.044 CrossRef S. Pourkhorshidi, N. Parvin, M.S. Kenevisi, M. Naeimi, H. Ebrahimnia Khaniki, A study on the microstructure and properties of Cu-based shape memory alloy produced by hot extrusion of mechanically alloyed powders. Mater. Sci. Eng., A 556, 658–663 (2012). doi:10.​1016/​j.​msea.​2012.​07.​044 CrossRef
15.
go back to reference S.K. Vajpai, R.K. Dube, S. Sangal, Application of rapid solidification powder metallurgy processing to prepare Cu–Al–Ni high temperature shape memory alloy strips with high strength and high ductility. Mater. Sci. Eng., A 570, 32–42 (2013). doi:10.1016/j.msea.2013.01.063 CrossRef S.K. Vajpai, R.K. Dube, S. Sangal, Application of rapid solidification powder metallurgy processing to prepare Cu–Al–Ni high temperature shape memory alloy strips with high strength and high ductility. Mater. Sci. Eng., A 570, 32–42 (2013). doi:10.​1016/​j.​msea.​2013.​01.​063 CrossRef
16.
go back to reference J.S. Benjamin, T.E. Volin, The mechanism of mechanical alloying. Metall. Trans. 5, 1929–1934 (1974)CrossRef J.S. Benjamin, T.E. Volin, The mechanism of mechanical alloying. Metall. Trans. 5, 1929–1934 (1974)CrossRef
17.
go back to reference L. Lu, M.O. Lai, Mechanical alloying, vol. 4 (Kluwer Academic Publishers, Boston, 1998)CrossRef L. Lu, M.O. Lai, Mechanical alloying, vol. 4 (Kluwer Academic Publishers, Boston, 1998)CrossRef
19.
21.
go back to reference S.K. Vajpai, R.K. Dube, S. Sangal, Microstructure and properties of Cu–Al–Ni shape memory alloy strips prepared via hot densification rolling of argon atomized powder preforms. Mater. Sci. Eng., A 529, 378–387 (2011). doi:10.1016/j.msea.2011.09.046 CrossRef S.K. Vajpai, R.K. Dube, S. Sangal, Microstructure and properties of Cu–Al–Ni shape memory alloy strips prepared via hot densification rolling of argon atomized powder preforms. Mater. Sci. Eng., A 529, 378–387 (2011). doi:10.​1016/​j.​msea.​2011.​09.​046 CrossRef
23.
go back to reference M.A. Dvorack, N. Kuwano, S. Polat, H. Chen, C.M. Wayman, Decomposition of β1-phase Cu–AI–Ni alloy at elevated temperature. Scripta Metall. 17(11), 1333–1336 (1983)CrossRef M.A. Dvorack, N. Kuwano, S. Polat, H. Chen, C.M. Wayman, Decomposition of β1-phase Cu–AI–Ni alloy at elevated temperature. Scripta Metall. 17(11), 1333–1336 (1983)CrossRef
24.
go back to reference M. Ahlers, Martensite and equilibrium phases in Cu–Zn and Cu–Zn–Al alloys. Prog. Mater Sci. 30, 135–186 (1986)CrossRef M. Ahlers, Martensite and equilibrium phases in Cu–Zn and Cu–Zn–Al alloys. Prog. Mater Sci. 30, 135–186 (1986)CrossRef
25.
go back to reference W. Jianxin, J. Bohong, T.Y. Hsu, Influence of grain size and ordering degree of the parent phase on MS in a Cu–Zn–Al Alloy containing boron. Acta Metall. 36, 1521–1526 (1988)CrossRef W. Jianxin, J. Bohong, T.Y. Hsu, Influence of grain size and ordering degree of the parent phase on MS in a Cu–Zn–Al Alloy containing boron. Acta Metall. 36, 1521–1526 (1988)CrossRef
26.
go back to reference P.M. La Roca, L.M. Isola, C.E. Sobrero, Ph Vermaut, J. Malarría, Grain size effect on thermal-induced martensitic transformation of polycrystalline Cu-based shape memory alloys. Mater. Today: Proc. 2(3), 743–746 (2015). doi:10.1016/j.matpr.2015.07.389 CrossRef P.M. La Roca, L.M. Isola, C.E. Sobrero, Ph Vermaut, J. Malarría, Grain size effect on thermal-induced martensitic transformation of polycrystalline Cu-based shape memory alloys. Mater. Today: Proc. 2(3), 743–746 (2015). doi:10.​1016/​j.​matpr.​2015.​07.​389 CrossRef
27.
go back to reference K. Mukunthan, L.C. Brown, Preparation and properties of fine grain β-CuAlNi strain- memory alloys. Metall. Trans. A 19, 2921–2929 (1988)CrossRef K. Mukunthan, L.C. Brown, Preparation and properties of fine grain β-CuAlNi strain- memory alloys. Metall. Trans. A 19, 2921–2929 (1988)CrossRef
29.
go back to reference M.F. Giordana, M.R. Esquivel, E. Zelaya, A detailed study of phase evolution in Cu–16 at.%Al and Cu–30 at.%Al alloys under different types of mechanical alloying processes. Adv. Powder Technol. 26, 470–477 (2015). doi:10.1016/j.apt.2014.12.005 CrossRef M.F. Giordana, M.R. Esquivel, E. Zelaya, A detailed study of phase evolution in Cu–16 at.%Al and Cu–30 at.%Al alloys under different types of mechanical alloying processes. Adv. Powder Technol. 26, 470–477 (2015). doi:10.​1016/​j.​apt.​2014.​12.​005 CrossRef
30.
go back to reference D.V. Dudina, O.I. Lomovsky, K.R. Valeev, S.F. Tikhov, N.N. Boldyreva, A.N. Salanov, S.V. Cherepanova, V.I. Zaikovskii, A.S. Andreev, O.B. Lapina, V.A. Sadykov, Phase evolution during early stages of mechanical alloying of Cu–13 wt% Al powder mixtures in a high-energy ball mill. J. Alloys Compd. 629, 343–350 (2015). doi:10.1016/j.jallcom.2014.12.120 CrossRef D.V. Dudina, O.I. Lomovsky, K.R. Valeev, S.F. Tikhov, N.N. Boldyreva, A.N. Salanov, S.V. Cherepanova, V.I. Zaikovskii, A.S. Andreev, O.B. Lapina, V.A. Sadykov, Phase evolution during early stages of mechanical alloying of Cu–13 wt% Al powder mixtures in a high-energy ball mill. J. Alloys Compd. 629, 343–350 (2015). doi:10.​1016/​j.​jallcom.​2014.​12.​120 CrossRef
32.
go back to reference P.R. Swann, H. Warlimont, The electron-metallography and crystallography of copper-aluminum martensites. Acta Metall. 11(6), 511–527 (1963)CrossRef P.R. Swann, H. Warlimont, The electron-metallography and crystallography of copper-aluminum martensites. Acta Metall. 11(6), 511–527 (1963)CrossRef
33.
go back to reference S. Westman, Refinement of the γ-Cu9Al4 Structure. Acta Chem. Scand. 19, 1411–1419 (1965)CrossRef S. Westman, Refinement of the γ-Cu9Al4 Structure. Acta Chem. Scand. 19, 1411–1419 (1965)CrossRef
34.
go back to reference M.F. Giordana, N. Muñoz-Vásquez, M. Garro-González, M.R. Esquivel, E. Zelaya, Study of the formation of Cu-24at.%Al by reactive milling, Procedia. Mater. Sci. 9C, 262–270 (2015). doi:10.1016/j.mspro.2015.04.033 M.F. Giordana, N. Muñoz-Vásquez, M. Garro-González, M.R. Esquivel, E. Zelaya, Study of the formation of Cu-24at.%Al by reactive milling, Procedia. Mater. Sci. 9C, 262–270 (2015). doi:10.​1016/​j.​mspro.​2015.​04.​033
35.
go back to reference R. Amini, S.M.M. Mousavizad, H. Abdollahpour, M. Ghaffari, M. Alizadeh, A.K. Okyay, Structural and microstructural phase evolution during mechano-synthesis of nanocrystalline/amorphous CuAlMn alloy powders. Adv. Powder Technol. 24, 1048–1053 (2013). doi:10.1016/j.apt.2013.03.005 CrossRef R. Amini, S.M.M. Mousavizad, H. Abdollahpour, M. Ghaffari, M. Alizadeh, A.K. Okyay, Structural and microstructural phase evolution during mechano-synthesis of nanocrystalline/amorphous CuAlMn alloy powders. Adv. Powder Technol. 24, 1048–1053 (2013). doi:10.​1016/​j.​apt.​2013.​03.​005 CrossRef
Metadata
Title
Analysis of the Cu-Al Milling Stages Through the Microstructure Evolution Studied by TEM and SEM
Authors
M. F. Giordana
N. Muñoz-Vásquez
M. R. Esquivel
E. Zelaya
Publication date
31-03-2017
Publisher
Springer US
Published in
Metallography, Microstructure, and Analysis / Issue 2/2017
Print ISSN: 2192-9262
Electronic ISSN: 2192-9270
DOI
https://doi.org/10.1007/s13632-017-0339-8

Other articles of this Issue 2/2017

Metallography, Microstructure, and Analysis 2/2017 Go to the issue

Premium Partners