Skip to main content
Top

2021 | OriginalPaper | Chapter

Analysis of the Energy Produced and Energy Quality of Nanofluid Impact on Photovoltaic-Thermal Systems

Authors : Stefano Aneli, Antonio Gagliano, Giuseppe M. Tina, Bekkay Hajji

Published in: Proceedings of the 2nd International Conference on Electronic Engineering and Renewable Energy Systems

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

To limit climate change, the use of renewable energy is mandatory. PV/T systems generate renewable energy, simultaneously satisfy both the thermal and electrical energy requests. Usually, these systems have some limitations to fulfill the thermal energy needs; therefore, it is necessary to improve their efficiency with the aim to increase the enthalpy level of the energy produced. In this paper, the effects of changing the cooling fluid from pure water to a nanofluid composed by water and aluminum oxide (Al2O3) in a PV/T system are studied. The analysis is based on the thermodynamics viewpoint, considering both the total energy produced and its quality. The thermal level achievable by changing the heat transfer fluid, as well as the electrical efficiency considering various input conditions has been calculated. Finally, the energy yield produced by a conventional PV/T plant, which use pure water (PV/T)w and the proposed improved PV/T plant, which use pure the nanofluid (PV/T)nf, under real climate conditions have been compared. Such comparison was developed taking into account the second law of thermodynamics as well as the exergy analysis.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Gagliano A, Tina GM, Aneli S, Nižetić S (2019) Comparative assessments of the performances of PV/T and conventional solar plants. J Clean Prod 219:304–315CrossRef Gagliano A, Tina GM, Aneli S, Nižetić S (2019) Comparative assessments of the performances of PV/T and conventional solar plants. J Clean Prod 219:304–315CrossRef
2.
go back to reference Boumaaraf B, Touafek K, Ait-cheikh MS, El Amine Slimani M (2020) Comparison of electrical and thermal performance evaluation of a classical PV generator and a water glazed hybrid photovoltaic–thermal collector. Math Comp Simul 167:176–193MathSciNetCrossRef Boumaaraf B, Touafek K, Ait-cheikh MS, El Amine Slimani M (2020) Comparison of electrical and thermal performance evaluation of a classical PV generator and a water glazed hybrid photovoltaic–thermal collector. Math Comp Simul 167:176–193MathSciNetCrossRef
3.
go back to reference Sakellariou E, Axaopoulos P (2017) Simulation and experimental performance analysis of a modified PV panel to a PVT collector. Sol Energy 155:715–726CrossRef Sakellariou E, Axaopoulos P (2017) Simulation and experimental performance analysis of a modified PV panel to a PVT collector. Sol Energy 155:715–726CrossRef
4.
go back to reference Herrando M, Ramos A, Zabalza I, Markides CN (2019) A comprehensive assessment of alternative absorber-exchanger designs for hybrid PVT-water collectors. Appl Energy 235:1583–1602CrossRef Herrando M, Ramos A, Zabalza I, Markides CN (2019) A comprehensive assessment of alternative absorber-exchanger designs for hybrid PVT-water collectors. Appl Energy 235:1583–1602CrossRef
5.
go back to reference Michael JJ, Iniyan S, Goic R (2015) Flat plate solar photovoltaic-thermal (PV/T) systems: a reference guide. Renew Sustain Energy Rev 51:62–88CrossRef Michael JJ, Iniyan S, Goic R (2015) Flat plate solar photovoltaic-thermal (PV/T) systems: a reference guide. Renew Sustain Energy Rev 51:62–88CrossRef
6.
go back to reference Antonanzas J, del Amo A, Martinez-Gracia A, Bayod-Rujula AA, Antonanzas-Torres F (2015) Towards the optimization of convective losses in photovoltaic–thermal panels. Sol Energy 116:323–336CrossRef Antonanzas J, del Amo A, Martinez-Gracia A, Bayod-Rujula AA, Antonanzas-Torres F (2015) Towards the optimization of convective losses in photovoltaic–thermal panels. Sol Energy 116:323–336CrossRef
7.
go back to reference Zondag HA, de Vries DW, van Helden WGJ, van Zolingen RJC, van Steenhoven AA (2003) The yield of different combined PV-thermal collector designs. Sol Energy 74:253–269CrossRef Zondag HA, de Vries DW, van Helden WGJ, van Zolingen RJC, van Steenhoven AA (2003) The yield of different combined PV-thermal collector designs. Sol Energy 74:253–269CrossRef
8.
go back to reference Chol S, Estman J (1995) Enhancing thermal conductivity of fluids with nanoparticles. ASME-Publications-Fed 231:99–106 Chol S, Estman J (1995) Enhancing thermal conductivity of fluids with nanoparticles. ASME-Publications-Fed 231:99–106
9.
go back to reference Sridhara V, Satapathy LN (2011) Al2O3-based nanofluids: a review. Nanoscale Res Lett 6:456CrossRef Sridhara V, Satapathy LN (2011) Al2O3-based nanofluids: a review. Nanoscale Res Lett 6:456CrossRef
10.
go back to reference Minea AA (2017) Hybrid nanofluids based on Al2O3, TiO2 and SiO2: numerical evaluation of different approaches. Int J Heat Mass Transfer 104:852–860CrossRef Minea AA (2017) Hybrid nanofluids based on Al2O3, TiO2 and SiO2: numerical evaluation of different approaches. Int J Heat Mass Transfer 104:852–860CrossRef
11.
go back to reference Ebrahimnia-Bajestan E, Moghadam MC, Niazmand H, Daungthongsuk W, Wongwises S (2016) Experimental and numerical investigation of nanofluids heat transfer characteristics for application in solar heat exchangers. Int J Heat Mass Transfer 92:1041–1052CrossRef Ebrahimnia-Bajestan E, Moghadam MC, Niazmand H, Daungthongsuk W, Wongwises S (2016) Experimental and numerical investigation of nanofluids heat transfer characteristics for application in solar heat exchangers. Int J Heat Mass Transfer 92:1041–1052CrossRef
12.
go back to reference HemmatEsfe M, Karimipour A, Yan WM, Akbari M, Safaei MR, Dahari M (2015) Experimental study on thermal conductivity of ethylene glycol based nanofluids containing Al2O3 nanoparticles. Int Commun Heat Mass Transfer 68:248–251CrossRef HemmatEsfe M, Karimipour A, Yan WM, Akbari M, Safaei MR, Dahari M (2015) Experimental study on thermal conductivity of ethylene glycol based nanofluids containing Al2O3 nanoparticles. Int Commun Heat Mass Transfer 68:248–251CrossRef
13.
go back to reference Yousefi T, Veysi F, Shojaeizadeh E, Zinadini S (2012) An experimental investigation on the effect of Al2O3–H2O nanofluid on the efficiency of flat-plate solar collectors. Renewable Energy 39:293–298CrossRef Yousefi T, Veysi F, Shojaeizadeh E, Zinadini S (2012) An experimental investigation on the effect of Al2O3–H2O nanofluid on the efficiency of flat-plate solar collectors. Renewable Energy 39:293–298CrossRef
14.
go back to reference Kasaeian A, Eshghi AT, Sameti M (2015) A review on the applications of nanofluids in solar energy systems. Renew Sustain Energy Rev 43:584–598CrossRef Kasaeian A, Eshghi AT, Sameti M (2015) A review on the applications of nanofluids in solar energy systems. Renew Sustain Energy Rev 43:584–598CrossRef
15.
go back to reference Alous S, Kayfeci M, Uysal A (2019) Experimental investigations of using MWCNTs and graphene nanoplatelets water-based nanofluids as coolants in PVT systems. Appl Thermal Eng 162, Article 114264 Alous S, Kayfeci M, Uysal A (2019) Experimental investigations of using MWCNTs and graphene nanoplatelets water-based nanofluids as coolants in PVT systems. Appl Thermal Eng 162, Article 114264
16.
go back to reference Al-Waeli AHA, Chaichan MT, Kazem HA, Sopiana K (2017) Comparative study to use nano-(Al2O3, CuO, and SiC) with water to enhance photovoltaic thermal PV/T collectors. Energy Convers Manag 148:963–973CrossRef Al-Waeli AHA, Chaichan MT, Kazem HA, Sopiana K (2017) Comparative study to use nano-(Al2O3, CuO, and SiC) with water to enhance photovoltaic thermal PV/T collectors. Energy Convers Manag 148:963–973CrossRef
17.
go back to reference Sardarabadi M, Passandideh-Fard M, Heris SZ (2014) Experimental investigation of the effects of silica/water nanofluid on PV/T (phot. thermal units). Energy 66:264–272CrossRef Sardarabadi M, Passandideh-Fard M, Heris SZ (2014) Experimental investigation of the effects of silica/water nanofluid on PV/T (phot. thermal units). Energy 66:264–272CrossRef
18.
go back to reference Gagliano A, Tina GM, Nocera F, Grasso AD, Aneli S (2019) Description and performance analysis of a flexible photovoltaic/thermal (PV/T) solar system. Renew Energy 137:144–156CrossRef Gagliano A, Tina GM, Nocera F, Grasso AD, Aneli S (2019) Description and performance analysis of a flexible photovoltaic/thermal (PV/T) solar system. Renew Energy 137:144–156CrossRef
19.
go back to reference El Fouas C, Hajji B, Gagliano A, Tina GM, Aneli S Numerical model and experimental validation of the electrical and thermal performances of a pilot PV/T plant. Energy Conversion and Management (in press) El Fouas C, Hajji B, Gagliano A, Tina GM, Aneli S Numerical model and experimental validation of the electrical and thermal performances of a pilot PV/T plant. Energy Conversion and Management (in press)
20.
go back to reference Avsec J, Oblak M (2007) The calculation of thermal conductivity, viscosity and thermodynamic properties for nanofluidson the basis of statistical nanomechanics. Int J Heat Mass Transf 50:4331–4341CrossRef Avsec J, Oblak M (2007) The calculation of thermal conductivity, viscosity and thermodynamic properties for nanofluidson the basis of statistical nanomechanics. Int J Heat Mass Transf 50:4331–4341CrossRef
21.
go back to reference Huang BJ, Lin TH, Hung WC, Sun FS (2001) Performance evaluation of solar photovoltaic/thermal systems. Sol Energy 70:443–448CrossRef Huang BJ, Lin TH, Hung WC, Sun FS (2001) Performance evaluation of solar photovoltaic/thermal systems. Sol Energy 70:443–448CrossRef
22.
go back to reference Chow TT, Pei G, Fong KF, Lin Z, Chan ALS, Ji J (2009) Energy and exergy analysis of PV/T collector with and without glass cover. Appl Energy 86:310–316CrossRef Chow TT, Pei G, Fong KF, Lin Z, Chan ALS, Ji J (2009) Energy and exergy analysis of PV/T collector with and without glass cover. Appl Energy 86:310–316CrossRef
23.
go back to reference Furbo L, Shah J (1996) Optimum solar collector fluid flow rates, EuroSun 1996 - Freiburg, Germany Furbo L, Shah J (1996) Optimum solar collector fluid flow rates, EuroSun 1996 - Freiburg, Germany
Metadata
Title
Analysis of the Energy Produced and Energy Quality of Nanofluid Impact on Photovoltaic-Thermal Systems
Authors
Stefano Aneli
Antonio Gagliano
Giuseppe M. Tina
Bekkay Hajji
Copyright Year
2021
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-6259-4_77