Skip to main content
Top
Published in: Journal of Electronic Materials 6/2021

31-01-2021 | Topical Collection: 62nd Electronic Materials Conference 2020

Analytical Calculation of Exciton Binding Energy, Quasi-Particle Band Gap and Optical Gap in Strained Mono-layer MoS2

Authors: S. Ahmad, M. Zubair, O. Jalil, K.-W. Ang, U. Younis

Published in: Journal of Electronic Materials | Issue 6/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Strain in two-dimensional (2D) materials induces shifts in the visible spectrum due to strained binding energies, an accurate study of which is critical for materials engineering in the design of optoelectronic applications. Different from previous studies that employed computationally demanding theoretical approaches, we present an analytical approach, based on the difference method to calculate the impact of strained binding energy on the optical gap in mono-layer \({\hbox {MoS}}_{2}\) by exploiting an existing tight binding (TB) and a fractional Coulomb potential model, for strained band gap and binding energy calculation, respectively. The inclusion of strained binding energy, changing at a rate of \(-8.1 \, \hbox {meV}/\bigtriangleup 1\%\) of biaxial in-plane tensile strain accompanied with a variation of \(-110 \, \hbox {meV}/\bigtriangleup 1\%\) of strain in the TB band gap, causes the optical gap to alter at a rate of \(-105.3 \, \hbox {meV}/\bigtriangleup 1\%\) of strain, supported by first-principles calculations and is benchmarked with reported experimental and theoretical values. The effect of strained binding energies causes a blueshift in the optical gap by a correction factor, increasing from \(\approx 0.5\%\) to \(\approx 12\%\), with an increase in equi-biaxial in-plane tensile strain from 1% to 11%, respectively. Furthermore, binding energy sensitivity to strain decreases linearly with a structural change from a mono-layer to a few layers in the 2D regime and saturates in the bulk regime. The presented framework can be used for the calculation of strained binding energies and optical gaps of other 2D materials and thus allows us to tune optical properties of 2D nanomaterials that are sensitive to lattice deformations.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference A.K.M. Newaz, D. Prasai, J.I. Ziegler, D. Caudel, S. Robinson, R.F. Haglund and K.I. Bolotin, Solid State Commun., 155, 49 (2013).CrossRef A.K.M. Newaz, D. Prasai, J.I. Ziegler, D. Caudel, S. Robinson, R.F. Haglund and K.I. Bolotin, Solid State Commun., 155, 49 (2013).CrossRef
2.
go back to reference B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti and A. Kis, Nat. Nanotechnol., 6, 147 (2011).CrossRef B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti and A. Kis, Nat. Nanotechnol., 6, 147 (2011).CrossRef
3.
go back to reference M.-W. Lin, L. Liu, Q. Lan, X. Tan, K.S. Dhindsa, P. Zeng, V.M. Naik, M.M.-C. Cheng and Z. Zhou, J. Phys. D: Appl. Phys., 45, 345102 (2012).CrossRef M.-W. Lin, L. Liu, Q. Lan, X. Tan, K.S. Dhindsa, P. Zeng, V.M. Naik, M.M.-C. Cheng and Z. Zhou, J. Phys. D: Appl. Phys., 45, 345102 (2012).CrossRef
4.
go back to reference Y. Xue, Y. Zhang, Y. Liu, H. Liu, J. Song, J. Sophia, J. Liu, Z. Xu, Q. Xu, and Z. Wang, ACS Nano 10, 573 (2015).CrossRef Y. Xue, Y. Zhang, Y. Liu, H. Liu, J. Song, J. Sophia, J. Liu, Z. Xu, Q. Xu, and Z. Wang, ACS Nano 10, 573 (2015).CrossRef
5.
go back to reference O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, Nat. Nanotechnol. 8, 497 (2013).CrossRef O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, Nat. Nanotechnol. 8, 497 (2013).CrossRef
6.
go back to reference Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun and G. Lu, ACS Nano, 6, 74 (2012).CrossRef Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun and G. Lu, ACS Nano, 6, 74 (2012).CrossRef
7.
go back to reference R.S. Sundaram, M. Engel, A. Lombardo, R. Krupke, A.C. Ferrari, P. Avouris and M. Steiner, Nano Lett., 13, 1416 (2013).CrossRef R.S. Sundaram, M. Engel, A. Lombardo, R. Krupke, A.C. Ferrari, P. Avouris and M. Steiner, Nano Lett., 13, 1416 (2013).CrossRef
8.
go back to reference A. Castellanos-Gomez, R. Roldán, E. Cappelluti, M. Buscema, F. Guinea, H.S. van der Zant and G.A. Steele, Nano Lett. 13, 5361 (2013).CrossRef A. Castellanos-Gomez, R. Roldán, E. Cappelluti, M. Buscema, F. Guinea, H.S. van der Zant and G.A. Steele, Nano Lett. 13, 5361 (2013).CrossRef
9.
go back to reference C. Rice, R.J. Young, R. Zan and U. Bangert, Phys. Rev. B, 87, 081307 (2013).CrossRef C. Rice, R.J. Young, R. Zan and U. Bangert, Phys. Rev. B, 87, 081307 (2013).CrossRef
10.
go back to reference Q. Yue, J. Kang, Z. Shao, X. Zhang, S. Chang, G. Wang, S. Qin and J. Li, Phys. Lett. A, 376, 1166 (2012).CrossRef Q. Yue, J. Kang, Z. Shao, X. Zhang, S. Chang, G. Wang, S. Qin and J. Li, Phys. Lett. A, 376, 1166 (2012).CrossRef
12.
go back to reference B.G. Shin, G.H. Han, S.J. Yun, H.M. Oh, J.J. Bae, Y.J. Song, C.Y. Park and Y.H. Lee, Adv. Mater., 28, 9378 (2016).CrossRef B.G. Shin, G.H. Han, S.J. Yun, H.M. Oh, J.J. Bae, Y.J. Song, C.Y. Park and Y.H. Lee, Adv. Mater., 28, 9378 (2016).CrossRef
13.
go back to reference L. Waldecker, A. Raja, M. Rösner, C. Steinke, A. Bostwick, R.J. Koch, C. Jozwiak, T. Taniguchi, K. Watanabe, E. Rotenberg and T.O. Wehling, Phys. Rev. Lett., 123, 206403 (2019).CrossRef L. Waldecker, A. Raja, M. Rösner, C. Steinke, A. Bostwick, R.J. Koch, C. Jozwiak, T. Taniguchi, K. Watanabe, E. Rotenberg and T.O. Wehling, Phys. Rev. Lett., 123, 206403 (2019).CrossRef
14.
go back to reference S. Borghardt, J.S. Tu, F. Winkler, J. Schubert, W. Zander, K. Leosson and B.E. Kardynał, Phys. Rev. Mater., 1, 054001 (2017).CrossRef S. Borghardt, J.S. Tu, F. Winkler, J. Schubert, W. Zander, K. Leosson and B.E. Kardynał, Phys. Rev. Mater., 1, 054001 (2017).CrossRef
15.
go back to reference A. Raja, L. Waldecker, J. Zipfel, Y. Cho, S. Brem, J.D. Ziegler, M. Kulig, T. Taniguchi, K. Watanabe, E. Malic and T.F. Heinz, Nat. Nanotechnol., 14, 832 (2019).CrossRef A. Raja, L. Waldecker, J. Zipfel, Y. Cho, S. Brem, J.D. Ziegler, M. Kulig, T. Taniguchi, K. Watanabe, E. Malic and T.F. Heinz, Nat. Nanotechnol., 14, 832 (2019).CrossRef
17.
go back to reference L. Yang, X. Cui, J. Zhang, K. Wang, M. Shen, S. Zeng, S.A. Dayeh, L. Feng and B. Xiang, Sci. Rep., 4, 5649 (2014).CrossRef L. Yang, X. Cui, J. Zhang, K. Wang, M. Shen, S. Zeng, S.A. Dayeh, L. Feng and B. Xiang, Sci. Rep., 4, 5649 (2014).CrossRef
18.
go back to reference H.J. Conley, B. Wang, J.I. Ziegler, R.F. Haglund Jr, S.T. Pantelides and K.I. Bolotin, Nano Lett., 13, 3626 (2013).CrossRef H.J. Conley, B. Wang, J.I. Ziegler, R.F. Haglund Jr, S.T. Pantelides and K.I. Bolotin, Nano Lett., 13, 3626 (2013).CrossRef
19.
go back to reference H. Li, A.W. Contryman, X. Qian, S.M. Ardakani, Y. Gong, X. Wang, J.M. Weisse, C.H. Lee and J. Zhao, Nat. Commun., 6, 1 (2015). H. Li, A.W. Contryman, X. Qian, S.M. Ardakani, Y. Gong, X. Wang, J.M. Weisse, C.H. Lee and J. Zhao, Nat. Commun., 6, 1 (2015).
20.
go back to reference M. Feierabend, A. Morlet, G. Berghäuser and E. Malic, Phys. Rev. B, 96, 045425 (2017).CrossRef M. Feierabend, A. Morlet, G. Berghäuser and E. Malic, Phys. Rev. B, 96, 045425 (2017).CrossRef
21.
go back to reference S Park, N Mutz, T Schultz, S Blumstengel, A Han, A Aljarb, LJ Li, EJ List-Kratochvil, P Amsalem, N Koch (2018) God 5: 025003CrossRef S Park, N Mutz, T Schultz, S Blumstengel, A Han, A Aljarb, LJ Li, EJ List-Kratochvil, P Amsalem, N Koch (2018) God 5: 025003CrossRef
22.
go back to reference Y. Bai, L. Zhou, J. Wang, W. Wu, L.J. McGilly, D. Halbertal, C.F.B. Lo, F. Liu, J. Ardelean, P. Rivera, N.R. Finney, Nat. Mater. 1, 1068 (2020)CrossRef Y. Bai, L. Zhou, J. Wang, W. Wu, L.J. McGilly, D. Halbertal, C.F.B. Lo, F. Liu, J. Ardelean, P. Rivera, N.R. Finney, Nat. Mater. 1, 1068 (2020)CrossRef
23.
go back to reference H. Shi, H. Pan, Y.W. Zhang and B.I. Yakobson, Phys. Rev. B, 87, 155304 (2013).CrossRef H. Shi, H. Pan, Y.W. Zhang and B.I. Yakobson, Phys. Rev. B, 87, 155304 (2013).CrossRef
24.
go back to reference O. Jalil, S. Ahmad, X. Liu, K.W. Ang and U. Younis, Phys. Rev. B, 130, 57001 (2020). O. Jalil, S. Ahmad, X. Liu, K.W. Ang and U. Younis, Phys. Rev. B, 130, 57001 (2020).
25.
go back to reference T. Cheiwchanchamnangij and W.R. Lambrecht, Phys. Rev. B, 85, 205302 (2012).CrossRef T. Cheiwchanchamnangij and W.R. Lambrecht, Phys. Rev. B, 85, 205302 (2012).CrossRef
26.
go back to reference S. Ahmad, M. Zubair, O. Jalil, M.Q. Mehmood, U. Younis, X. Liu, K.W. Ang and L.K. Ang, Phys. Rev. Appl., 13, 064062 (2020).CrossRef S. Ahmad, M. Zubair, O. Jalil, M.Q. Mehmood, U. Younis, X. Liu, K.W. Ang and L.K. Ang, Phys. Rev. Appl., 13, 064062 (2020).CrossRef
27.
go back to reference E. Cappelluti, R. Roldán, J.A. Silva-Guillén, P. Ordejón and F. Guinea, Phys. Rev. B, 88, 075409 (2013).CrossRef E. Cappelluti, R. Roldán, J.A. Silva-Guillén, P. Ordejón and F. Guinea, Phys. Rev. B, 88, 075409 (2013).CrossRef
28.
go back to reference E. Ridolfi, D. Le, T.S. Rahman, E.R. Mucciolo and C.H. Lewenkopf, J. Condens., 27, 365501 (2015).CrossRef E. Ridolfi, D. Le, T.S. Rahman, E.R. Mucciolo and C.H. Lewenkopf, J. Condens., 27, 365501 (2015).CrossRef
30.
go back to reference P. Giannozzi, O. Baseggio, P. Bonfà, D. Brunato, R. Car, I. Carnimeo, C. Cavazzoni, S. de Gironcoli, P. Delugas, F. FerrariRuffino, A. Ferretti, N. Marzari, I. Timrov, A. Urru and S. Baroni, J. Chem. Phys. 152, 154105 (2020).CrossRef P. Giannozzi, O. Baseggio, P. Bonfà, D. Brunato, R. Car, I. Carnimeo, C. Cavazzoni, S. de Gironcoli, P. Delugas, F. FerrariRuffino, A. Ferretti, N. Marzari, I. Timrov, A. Urru and S. Baroni, J. Chem. Phys. 152, 154105 (2020).CrossRef
31.
go back to reference H. Xiao, J. Tahir-Kheli and W.A. Goddard III, J. Phys. Chem., 2, 212 (2011). H. Xiao, J. Tahir-Kheli and W.A. Goddard III, J. Phys. Chem., 2, 212 (2011).
32.
go back to reference R. Frisenda, M. Drüppel, R. Schmidt, S.M. de Vasconcellos, D.P. de Lara, R. Bratschitsch, M. Rohlfing, A. Castellanos-Gomez, God 1, 1 (2017)CrossRef R. Frisenda, M. Drüppel, R. Schmidt, S.M. de Vasconcellos, D.P. de Lara, R. Bratschitsch, M. Rohlfing, A. Castellanos-Gomez, God 1, 1 (2017)CrossRef
33.
go back to reference G. Plechinger, A. Castellanos-Gomez, M. Buscema, H.S. Van Der Zant, G.A. Steele, A. Kuc, T. Heine, C. Schueller and T. Korn, God, 2, 015006 (2015).CrossRef G. Plechinger, A. Castellanos-Gomez, M. Buscema, H.S. Van Der Zant, G.A. Steele, A. Kuc, T. Heine, C. Schueller and T. Korn, God, 2, 015006 (2015).CrossRef
34.
go back to reference H. Li, A.W. Contryman, X. Qian, S.M. Ardakani, Y. Gong, X. Wang, J.M. Weisse, C.H. Lee, J. Zhao, P.M. Ajayan and J. Li, Nat. Commun. 6, 1 (2015). H. Li, A.W. Contryman, X. Qian, S.M. Ardakani, Y. Gong, X. Wang, J.M. Weisse, C.H. Lee, J. Zhao, P.M. Ajayan and J. Li, Nat. Commun. 6, 1 (2015).
35.
go back to reference S.D. Park and S.Y. Kim, CSM, 5, 305 (2016). S.D. Park and S.Y. Kim, CSM, 5, 305 (2016).
36.
go back to reference C. Robert, M.A. Semina, F. Cadiz, M. Manca, E. Courtade, T. Taniguchi, K. Watanabe, H. Cai, S. Tongay, B. Lassagne, P. Renucci, T. Amand, X. Marie, M. M. Glazov, and B. Urbaszek, Phys. Rev. Mater., 2, 011001 (2018).CrossRef C. Robert, M.A. Semina, F. Cadiz, M. Manca, E. Courtade, T. Taniguchi, K. Watanabe, H. Cai, S. Tongay, B. Lassagne, P. Renucci, T. Amand, X. Marie, M. M. Glazov, and B. Urbaszek, Phys. Rev. Mater., 2, 011001 (2018).CrossRef
37.
39.
go back to reference V. Kaushik, S. Wu, H. Jang, J. Kang, K. Kim and JW. Suk, Nanomaterials, 8, 587 (2018).CrossRef V. Kaushik, S. Wu, H. Jang, J. Kang, K. Kim and JW. Suk, Nanomaterials, 8, 587 (2018).CrossRef
Metadata
Title
Analytical Calculation of Exciton Binding Energy, Quasi-Particle Band Gap and Optical Gap in Strained Mono-layer MoS2
Authors
S. Ahmad
M. Zubair
O. Jalil
K.-W. Ang
U. Younis
Publication date
31-01-2021
Publisher
Springer US
Published in
Journal of Electronic Materials / Issue 6/2021
Print ISSN: 0361-5235
Electronic ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-020-08719-1

Other articles of this Issue 6/2021

Journal of Electronic Materials 6/2021 Go to the issue

Topical Collection: 62nd Electronic Materials Conference 2020

Growth Parameter Based Control of Cation Disorder in MgSnN2 Thin Films