Skip to main content
Top
Published in: International Journal of Mechanics and Materials in Design 1/2022

29-09-2021

Analytical-geometrical percolation network model for piezoresistivity of hybrid CNT–CB polymer nanocomposites using Monte Carlo simulations

Authors: M. Haghgoo, R. Ansari, M. K. Hassanzadeh-Aghdam

Published in: International Journal of Mechanics and Materials in Design | Issue 1/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A 3D Monte Carlo simulation and percolation network model for hybrid nanocomposites reinforced by carbon nanotubes (CNTs) and carbon black (CB) nanoparticles (NPs) is established to investigate the percolation probability and piezoresistivity considering electron tunneling effect. Firstly, a Monte Carlo algorithm is developed to form a representative volume element filled with randomly oriented CNTs and randomly dispersed CB NPs. Later, a percolation like network model is developed to determine the resistivity between each of CNTs and CB NPs, and then the electrical model based on modified location analysis is employed to calculate the corresponding piezoresistive behavior of hybrid CNT–CB polymer nanocomposites under tension. Tunneling resistance variation with the evolution of the conductive network during the inducing strain leads to non-linear and exponential behavior of relative electrical resistance change with strain. Parametric studies are performed to show the effects of CB volume fraction, size and CNT maximum orientation angle on the percolation probability and piezoresistivity of hybrid CNT–CB polymer nanocomposites. Results indicate that the piezoresistive sensitivity is greatly improved in the nanocomposites with the introduction of hybrid CB NPs/short aligned CNTs. Respecting to piezoresistive sensibility, the gauge factor calculated from the change of resistance as a function of applied strain reaches high value for sensitive piezoresistive sensor with lower Poisson’s ratio and larger diameter of CB NPs.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Alian, A., Meguid, S.: Multiscale modeling of the coupled electromechanical behavior of multifunctional nanocomposites. Compos. Struct. 208, 826–835 (2019) Alian, A., Meguid, S.: Multiscale modeling of the coupled electromechanical behavior of multifunctional nanocomposites. Compos. Struct. 208, 826–835 (2019)
go back to reference Amini, A., Bahreyni, B.: Behavioral model for electrical response and strain sensitivity of nanotube-based nanocomposite materials. J. Vac. Sci. Technol. B Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 30(2), 022001 (2012) Amini, A., Bahreyni, B.: Behavioral model for electrical response and strain sensitivity of nanotube-based nanocomposite materials. J. Vac. Sci. Technol. B Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 30(2), 022001 (2012)
go back to reference Arenhart, R., Barra, G., Fernandes, C.: Simulation of percolation threshold and electrical conductivity in composites filled with conductive particles: effect of polydisperse particle size distribution. Polym. Compos. 37(1), 61–69 (2016) Arenhart, R., Barra, G., Fernandes, C.: Simulation of percolation threshold and electrical conductivity in composites filled with conductive particles: effect of polydisperse particle size distribution. Polym. Compos. 37(1), 61–69 (2016)
go back to reference Aribou, N., et al.: Prediction of filler/matrix interphase effects on AC and DC electrical properties of carbon reinforced polymer composites. Polym. Compos. 40(1), 346–352 (2019) Aribou, N., et al.: Prediction of filler/matrix interphase effects on AC and DC electrical properties of carbon reinforced polymer composites. Polym. Compos. 40(1), 346–352 (2019)
go back to reference Arif, M.F., et al.: Strong linear-piezoresistive-response of carbon nanostructures reinforced hyperelastic polymer nanocomposites. Compos. A Appl. Sci. Manuf. 113, 141–149 (2018) Arif, M.F., et al.: Strong linear-piezoresistive-response of carbon nanostructures reinforced hyperelastic polymer nanocomposites. Compos. A Appl. Sci. Manuf. 113, 141–149 (2018)
go back to reference Avilés, F., et al.: A comparative study on the mechanical, electrical and piezoresistive properties of polymer composites using carbon nanostructures of different topology. Eur. Polym. J. 99, 394–402 (2018) Avilés, F., et al.: A comparative study on the mechanical, electrical and piezoresistive properties of polymer composites using carbon nanostructures of different topology. Eur. Polym. J. 99, 394–402 (2018)
go back to reference Bao, W., et al.: Tunneling resistance and its effect on the electrical conductivity of carbon nanotube nanocomposites. J. Appl. Phys. 111(9), 093726 (2012) Bao, W., et al.: Tunneling resistance and its effect on the electrical conductivity of carbon nanotube nanocomposites. J. Appl. Phys. 111(9), 093726 (2012)
go back to reference Berhan, L., Sastry, A.: Modeling percolation in high-aspect-ratio fiber systems. I. Soft-core versus hard-core models. Phys. Rev. E 75(4), 041120 (2007) Berhan, L., Sastry, A.: Modeling percolation in high-aspect-ratio fiber systems. I. Soft-core versus hard-core models. Phys. Rev. E 75(4), 041120 (2007)
go back to reference Bilotti, E., et al.: Controlling the dynamic percolation of carbon nanotube based conductive polymer composites by addition of secondary nanofillers: the effect on electrical conductivity and tuneable sensing behaviour. Compos. Sci. Technol. 74, 85–90 (2013) Bilotti, E., et al.: Controlling the dynamic percolation of carbon nanotube based conductive polymer composites by addition of secondary nanofillers: the effect on electrical conductivity and tuneable sensing behaviour. Compos. Sci. Technol. 74, 85–90 (2013)
go back to reference Burmistrov, I., et al.: Improvement of carbon black based polymer composite electrical conductivity with additions of MWCNT. Compos. Sci. Technol. 129, 79–85 (2016) Burmistrov, I., et al.: Improvement of carbon black based polymer composite electrical conductivity with additions of MWCNT. Compos. Sci. Technol. 129, 79–85 (2016)
go back to reference Cao, M., et al.: Wearable piezoresistive pressure sensors based on 3D graphene. Chem. Eng. J. 406, 126777 (2020) Cao, M., et al.: Wearable piezoresistive pressure sensors based on 3D graphene. Chem. Eng. J. 406, 126777 (2020)
go back to reference Castellino, M., et al.: Conductivity in carbon nanotube polymer composites: a comparison between model and experiment. Compos. A Appl. Sci. Manuf. 87, 237–242 (2016) Castellino, M., et al.: Conductivity in carbon nanotube polymer composites: a comparison between model and experiment. Compos. A Appl. Sci. Manuf. 87, 237–242 (2016)
go back to reference Chanklin, W., Laowongkotr, J., Chibante, L.F.: Electrical property validation of percolation modeling in different polymer structures of carbon-based nanocomposites. Mater. Today Commun. 17, 153–160 (2018) Chanklin, W., Laowongkotr, J., Chibante, L.F.: Electrical property validation of percolation modeling in different polymer structures of carbon-based nanocomposites. Mater. Today Commun. 17, 153–160 (2018)
go back to reference Chen, J., et al.: Synergistic effect of carbon nanotubes and carbon black on electrical conductivity of PA6/ABS blend. Compos. Sci. Technol. 81, 1–8 (2013) Chen, J., et al.: Synergistic effect of carbon nanotubes and carbon black on electrical conductivity of PA6/ABS blend. Compos. Sci. Technol. 81, 1–8 (2013)
go back to reference Chen, Y., et al.: Theoretical estimation on the percolation threshold for polymer matrix composites with hybrid fillers. Compos. Struct. 124, 292–299 (2015) Chen, Y., et al.: Theoretical estimation on the percolation threshold for polymer matrix composites with hybrid fillers. Compos. Struct. 124, 292–299 (2015)
go back to reference Duan, L., et al.: Designing formulation variables of extrusion-based manufacturing of carbon black conductive polymer composites for piezoresistive sensing. Compos. Sci. Technol. 171, 78–85 (2019) Duan, L., et al.: Designing formulation variables of extrusion-based manufacturing of carbon black conductive polymer composites for piezoresistive sensing. Compos. Sci. Technol. 171, 78–85 (2019)
go back to reference Fang, C., et al.: A Monte Carlo model with equipotential approximation and tunneling resistance for the electrical conductivity of carbon nanotube polymer composites. Carbon 146, 125–138 (2019) Fang, C., et al.: A Monte Carlo model with equipotential approximation and tunneling resistance for the electrical conductivity of carbon nanotube polymer composites. Carbon 146, 125–138 (2019)
go back to reference Gbaguidi, A., Namilae, S., Kim, D.: Stochastic percolation model for the effect of nanotube agglomeration on the conductivity and piezoresistivity of hybrid nanocomposites. Comput. Mater. Sci. 166, 9–19 (2019) Gbaguidi, A., Namilae, S., Kim, D.: Stochastic percolation model for the effect of nanotube agglomeration on the conductivity and piezoresistivity of hybrid nanocomposites. Comput. Mater. Sci. 166, 9–19 (2019)
go back to reference Georgousis, G., et al.: Strain sensing in polymer/carbon nanotube composites by electrical resistance measurement. Compos. B Eng. 68, 162–169 (2015) Georgousis, G., et al.: Strain sensing in polymer/carbon nanotube composites by electrical resistance measurement. Compos. B Eng. 68, 162–169 (2015)
go back to reference Gong, S., Zhu, Z.H.: On the mechanism of piezoresistivity of carbon nanotube polymer composites. Polymer 55(16), 4136–4149 (2014) Gong, S., Zhu, Z.H.: On the mechanism of piezoresistivity of carbon nanotube polymer composites. Polymer 55(16), 4136–4149 (2014)
go back to reference Gong, S., Zhu, Z., Haddad, E.: Modeling electrical conductivity of nanocomposites by considering carbon nanotube deformation at nanotube junctions. J. Appl. Phys. 114(7), 074303 (2013) Gong, S., Zhu, Z., Haddad, E.: Modeling electrical conductivity of nanocomposites by considering carbon nanotube deformation at nanotube junctions. J. Appl. Phys. 114(7), 074303 (2013)
go back to reference Gong, S., Zhu, Z., Meguid, S.: Carbon nanotube agglomeration effect on piezoresistivity of polymer nanocomposites. Polymer 55(21), 5488–5499 (2014) Gong, S., Zhu, Z., Meguid, S.: Carbon nanotube agglomeration effect on piezoresistivity of polymer nanocomposites. Polymer 55(21), 5488–5499 (2014)
go back to reference Gong, S., Zhu, Z., Meguid, S.: Anisotropic electrical conductivity of polymer composites with aligned carbon nanotubes. Polymer 56, 498–506 (2015) Gong, S., Zhu, Z., Meguid, S.: Anisotropic electrical conductivity of polymer composites with aligned carbon nanotubes. Polymer 56, 498–506 (2015)
go back to reference Hu, N., et al.: The electrical properties of polymer nanocomposites with carbon nanotube fillers. Nanotechnology 19(21), 215701 (2008) Hu, N., et al.: The electrical properties of polymer nanocomposites with carbon nanotube fillers. Nanotechnology 19(21), 215701 (2008)
go back to reference Hu, N., et al.: Tunneling effect in a polymer/carbon nanotube nanocomposite strain sensor. Acta Mater. 56(13), 2929–2936 (2008) Hu, N., et al.: Tunneling effect in a polymer/carbon nanotube nanocomposite strain sensor. Acta Mater. 56(13), 2929–2936 (2008)
go back to reference Hu, B., et al.: Multi-scale numerical simulations on piezoresistivity of CNT/polymer nanocomposites. Nanoscale Res. Lett. 7(1), 1–11 (2012) Hu, B., et al.: Multi-scale numerical simulations on piezoresistivity of CNT/polymer nanocomposites. Nanoscale Res. Lett. 7(1), 1–11 (2012)
go back to reference Jin, J., et al.: Enhancing the electrical conductivity of polymer composites. Eur. Polym. J. 49(5), 1066–1072 (2013) Jin, J., et al.: Enhancing the electrical conductivity of polymer composites. Eur. Polym. J. 49(5), 1066–1072 (2013)
go back to reference Jin, L., et al.: Microstructural origin of resistance–strain hysteresis in carbon nanotube thin film conductors. Proc. Natl. Acad. Sci. 115(9), 1986–1991 (2018) Jin, L., et al.: Microstructural origin of resistance–strain hysteresis in carbon nanotube thin film conductors. Proc. Natl. Acad. Sci. 115(9), 1986–1991 (2018)
go back to reference Kalaitzidou, K., Fukushima, H., Drzal, L.T.: A route for polymer nanocomposites with engineered electrical conductivity and percolation threshold. Materials 3(2), 1089–1103 (2010) Kalaitzidou, K., Fukushima, H., Drzal, L.T.: A route for polymer nanocomposites with engineered electrical conductivity and percolation threshold. Materials 3(2), 1089–1103 (2010)
go back to reference Ke, K., et al.: Piezoresistive thermoplastic polyurethane nanocomposites with carbon nanostructures. Carbon 139, 52–58 (2018) Ke, K., et al.: Piezoresistive thermoplastic polyurethane nanocomposites with carbon nanostructures. Carbon 139, 52–58 (2018)
go back to reference Ke, K., et al.: Boosting electrical and piezoresistive properties of polymer nanocomposites via hybrid carbon fillers: a review. Carbon 173, 1020–1040 (2020) Ke, K., et al.: Boosting electrical and piezoresistive properties of polymer nanocomposites via hybrid carbon fillers: a review. Carbon 173, 1020–1040 (2020)
go back to reference Kershaw, D.S.: The incomplete Cholesky—conjugate gradient method for the iterative solution of systems of linear equations. J. Comput. Phys. 26(1), 43–65 (1978)MathSciNetMATH Kershaw, D.S.: The incomplete Cholesky—conjugate gradient method for the iterative solution of systems of linear equations. J. Comput. Phys. 26(1), 43–65 (1978)MathSciNetMATH
go back to reference Mohiuddin, M., Hoa, S.V.: Estimation of contact resistance and its effect on electrical conductivity of CNT/PEEK composites. Compos. Sci. Technol. 79, 42–48 (2013) Mohiuddin, M., Hoa, S.V.: Estimation of contact resistance and its effect on electrical conductivity of CNT/PEEK composites. Compos. Sci. Technol. 79, 42–48 (2013)
go back to reference Namilae, S., Li, J., Chava, S.: Improved piezoresistivity and damage detection application of hybrid carbon nanotube sheet-graphite platelet nanocomposites. Mech. Adv. Mater. Struct. 26(15), 1333–1341 (2019) Namilae, S., Li, J., Chava, S.: Improved piezoresistivity and damage detection application of hybrid carbon nanotube sheet-graphite platelet nanocomposites. Mech. Adv. Mater. Struct. 26(15), 1333–1341 (2019)
go back to reference Pandey, G., Biswas, A.: Estimating electrical conductivity of multi-scale composites with conductive nanoparticles using bidirectional time marching percolation network mapping. Comput. Mater. Sci. 89, 80–88 (2014) Pandey, G., Biswas, A.: Estimating electrical conductivity of multi-scale composites with conductive nanoparticles using bidirectional time marching percolation network mapping. Comput. Mater. Sci. 89, 80–88 (2014)
go back to reference Qu, M., Nilsson, F., Schubert, D.W.: Novel definition of the synergistic effect between carbon nanotubes and carbon black for electrical conductivity. Nanotechnology 30(24), 245703 (2019) Qu, M., Nilsson, F., Schubert, D.W.: Novel definition of the synergistic effect between carbon nanotubes and carbon black for electrical conductivity. Nanotechnology 30(24), 245703 (2019)
go back to reference Rahman, R., Servati, P.: Effects of inter-tube distance and alignment on tunnelling resistance and strain sensitivity of nanotube/polymer composite films. Nanotechnology 23(5), 055703 (2012) Rahman, R., Servati, P.: Effects of inter-tube distance and alignment on tunnelling resistance and strain sensitivity of nanotube/polymer composite films. Nanotechnology 23(5), 055703 (2012)
go back to reference Souri, H., et al.: A theoretical study on the piezoresistive response of carbon nanotubes embedded in polymer nanocomposites in an elastic region. Carbon 120, 427–437 (2017) Souri, H., et al.: A theoretical study on the piezoresistive response of carbon nanotubes embedded in polymer nanocomposites in an elastic region. Carbon 120, 427–437 (2017)
go back to reference Taya, M., Kim, W., Ono, K.: Piezoresistivity of a short fiber/elastomer matrix composite. Mech. Mater. 28(1–4), 53–59 (1998) Taya, M., Kim, W., Ono, K.: Piezoresistivity of a short fiber/elastomer matrix composite. Mech. Mater. 28(1–4), 53–59 (1998)
go back to reference Wang, Z., Ye, X.: A numerical investigation on piezoresistive behaviour of carbon nanotube/polymer composites: mechanism and optimizing principle. Nanotechnology 24(26), 265704 (2013) Wang, Z., Ye, X.: A numerical investigation on piezoresistive behaviour of carbon nanotube/polymer composites: mechanism and optimizing principle. Nanotechnology 24(26), 265704 (2013)
go back to reference Wang, G., et al.: Electrical percolation of nanoparticle-polymer composites. Comput. Mater. Sci. 150, 102–106 (2018) Wang, G., et al.: Electrical percolation of nanoparticle-polymer composites. Comput. Mater. Sci. 150, 102–106 (2018)
go back to reference Wen, M., et al.: The electrical conductivity of carbon nanotube/carbon black/polypropylene composites prepared through multistage stretching extrusion. Polymer 53(7), 1602–1610 (2012) Wen, M., et al.: The electrical conductivity of carbon nanotube/carbon black/polypropylene composites prepared through multistage stretching extrusion. Polymer 53(7), 1602–1610 (2012)
go back to reference Wichmann, M.H., et al.: Piezoresistive response of epoxy composites with carbon nanoparticles under tensile load. Phys. Rev. B 80(24), 245437 (2009) Wichmann, M.H., et al.: Piezoresistive response of epoxy composites with carbon nanoparticles under tensile load. Phys. Rev. B 80(24), 245437 (2009)
go back to reference Wu, K., et al.: Largely enhanced thermal and electrical conductivity via constructing double percolated filler network in polypropylene/expanded graphite–Multi-wall carbon nanotubes ternary composites. Compos. Sci. Technol. 130, 28–35 (2016) Wu, K., et al.: Largely enhanced thermal and electrical conductivity via constructing double percolated filler network in polypropylene/expanded graphite–Multi-wall carbon nanotubes ternary composites. Compos. Sci. Technol. 130, 28–35 (2016)
go back to reference Wu, D., et al.: A percolation network model to predict the electrical property of flexible CNT/PDMS composite films fabricated by spin coating technique. Compos Part B Eng 174, 107034 (2019) Wu, D., et al.: A percolation network model to predict the electrical property of flexible CNT/PDMS composite films fabricated by spin coating technique. Compos Part B Eng 174, 107034 (2019)
go back to reference Xiong, Z.-Y., et al.: Modeling the electrical percolation of mixed carbon fillers in polymer blends. Carbon 70, 233–240 (2014) Xiong, Z.-Y., et al.: Modeling the electrical percolation of mixed carbon fillers in polymer blends. Carbon 70, 233–240 (2014)
go back to reference Zhang, C., et al.: Electrical and mechanical properties of CNT/CB dual filler conductive adhesives (DFCAs) for automotive multi-material joints. Compos. Struct. 225, 111183 (2019) Zhang, C., et al.: Electrical and mechanical properties of CNT/CB dual filler conductive adhesives (DFCAs) for automotive multi-material joints. Compos. Struct. 225, 111183 (2019)
Metadata
Title
Analytical-geometrical percolation network model for piezoresistivity of hybrid CNT–CB polymer nanocomposites using Monte Carlo simulations
Authors
M. Haghgoo
R. Ansari
M. K. Hassanzadeh-Aghdam
Publication date
29-09-2021
Publisher
Springer Netherlands
Published in
International Journal of Mechanics and Materials in Design / Issue 1/2022
Print ISSN: 1569-1713
Electronic ISSN: 1573-8841
DOI
https://doi.org/10.1007/s10999-021-09568-4

Other articles of this Issue 1/2022

International Journal of Mechanics and Materials in Design 1/2022 Go to the issue

Premium Partners