Skip to main content
Top
Published in: Optical and Quantum Electronics 6/2019

01-06-2019

Analyzing honeycomb photonic crystal waveguides by Dirichlet-to-Neumann maps

Authors: Mengmeng Wang, Zhen Hu

Published in: Optical and Quantum Electronics | Issue 6/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

As an analog to graphene, honeycomb photonic crystals (PhCs) have attracted a great deal of interest in recent years. The additional degrees of freedom in a honeycomb PhC are useful in designing and optimizing waveguides, can be used to control the symmetry of the system and to realize novel optical devices. In this paper, we present an efficient numerical method for analyzing two-dimensional honeycomb PhC waveguides. Our method is based on a special supercell that covers one period of the honeycomb PhC waveguide and the so-called Dirichlet-to-Neumann map of the supercell. The method gives rise to a linear eigenvalue value problem with relatively small matrices, and it is validated by comparing with previous works. As an application of the method, we calculate edge modes for a few different PhCs. For a honeycomb PhC with dielectric rods in air, we found an edge mode at the zigzag edge, without using special modified rods at the edge. For a honeycomb PhC with air holes, we found a new edge mode when the PhC is bounded by a perfectly electric conductor.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Adibi, A., Xu, Y., Lee, R.K., Yariv, A., Scherer, A.: Properties of the slab modes in photonic crystal optical waveguides. J. Lightwave Technol. 18(11), 1554–1564 (2000)ADSCrossRef Adibi, A., Xu, Y., Lee, R.K., Yariv, A., Scherer, A.: Properties of the slab modes in photonic crystal optical waveguides. J. Lightwave Technol. 18(11), 1554–1564 (2000)ADSCrossRef
go back to reference Ao, X., Lin, Z., Chan, C.: One-way edge mode in a magneto-optical honeycomb photonic crystal. Phys. Rev. B 80(3), 033105 (2009)ADSCrossRef Ao, X., Lin, Z., Chan, C.: One-way edge mode in a magneto-optical honeycomb photonic crystal. Phys. Rev. B 80(3), 033105 (2009)ADSCrossRef
go back to reference Axmann, W., Kuchment, P.: An efficient finite element method for computing spectra of photonic and acoustic band-gap materials: I. scalar case. J. Comput. Phys. 150(2), 468–481 (1999)ADSMathSciNetCrossRef Axmann, W., Kuchment, P.: An efficient finite element method for computing spectra of photonic and acoustic band-gap materials: I. scalar case. J. Comput. Phys. 150(2), 468–481 (1999)ADSMathSciNetCrossRef
go back to reference Cassagne, D., Jouanin, C., Bertho, D.: Photonic band gaps in a two-dimensional graphite structure. Phys. Rev. B 52(4), R2217–R2220 (1995)ADSCrossRef Cassagne, D., Jouanin, C., Bertho, D.: Photonic band gaps in a two-dimensional graphite structure. Phys. Rev. B 52(4), R2217–R2220 (1995)ADSCrossRef
go back to reference David, A., Benisty, H., Weisbuch, C.: Fast factorization rule and plane-wave expansion method for two-dimensional photonic crystals with arbitrary hole-shape. Phys. Rev. B 73(7), 075107 (2006)ADSCrossRef David, A., Benisty, H., Weisbuch, C.: Fast factorization rule and plane-wave expansion method for two-dimensional photonic crystals with arbitrary hole-shape. Phys. Rev. B 73(7), 075107 (2006)ADSCrossRef
go back to reference Dossou, K., Byrne, M.A., Botten, L.C.: Finite element computation of grating scattering matrices and application to photonic crystal band calculations. J. Comput. Phys. 219(1), 120–143 (2006)ADSMathSciNetCrossRef Dossou, K., Byrne, M.A., Botten, L.C.: Finite element computation of grating scattering matrices and application to photonic crystal band calculations. J. Comput. Phys. 219(1), 120–143 (2006)ADSMathSciNetCrossRef
go back to reference Escalante, J.M., Martínez, A., Laude, V.: Design of single-mode waveguides for enhanced light-sound interaction in honeycomb-lattice silicon slabs. J. Appl. Phys. 115(6), 064302 (2014)ADSCrossRef Escalante, J.M., Martínez, A., Laude, V.: Design of single-mode waveguides for enhanced light-sound interaction in honeycomb-lattice silicon slabs. J. Appl. Phys. 115(6), 064302 (2014)ADSCrossRef
go back to reference Haldane, F., Raghu, S.: Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry. Phys. Rev. Lett. 100(1), 013904 (2008)ADSCrossRef Haldane, F., Raghu, S.: Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry. Phys. Rev. Lett. 100(1), 013904 (2008)ADSCrossRef
go back to reference Hu, Z., Lu, Y.Y.: Efficient analysis of photonic crystal devices by Dirichlet-to-Neumann maps. Opt. Express 16(22), 17383–17399 (2008)ADSCrossRef Hu, Z., Lu, Y.Y.: Efficient analysis of photonic crystal devices by Dirichlet-to-Neumann maps. Opt. Express 16(22), 17383–17399 (2008)ADSCrossRef
go back to reference Hu, Z., Lu, Y.Y.: Efficient numerical modeling of photonic crystal heterostructure devices. J. Lightwave Technol. 33(10), 2012–2018 (2015)ADSCrossRef Hu, Z., Lu, Y.Y.: Efficient numerical modeling of photonic crystal heterostructure devices. J. Lightwave Technol. 33(10), 2012–2018 (2015)ADSCrossRef
go back to reference Huang, Y., Lu, Y.Y.: Scattering from periodic arrays of cylinders by Dirichlet-to-Neumann maps. J. Lightwave Technol. 24(9), 3448–3453 (2006)ADSCrossRef Huang, Y., Lu, Y.Y.: Scattering from periodic arrays of cylinders by Dirichlet-to-Neumann maps. J. Lightwave Technol. 24(9), 3448–3453 (2006)ADSCrossRef
go back to reference Huang, Y., Lu, Y.Y., Li, S.: Analyzing photonic crystal waveguides by Dirichlet-to-Neumann maps. JOSA B 24(11), 2860–2867 (2007)ADSCrossRef Huang, Y., Lu, Y.Y., Li, S.: Analyzing photonic crystal waveguides by Dirichlet-to-Neumann maps. JOSA B 24(11), 2860–2867 (2007)ADSCrossRef
go back to reference Jia, H., Yasumoto, K.: Rigorous analysis of guided modes of two-dimensional metallic electromagnetic crystal waveguides. J. Electromag. Waves Appl. 19(14), 1919–1933 (2005)CrossRef Jia, H., Yasumoto, K.: Rigorous analysis of guided modes of two-dimensional metallic electromagnetic crystal waveguides. J. Electromag. Waves Appl. 19(14), 1919–1933 (2005)CrossRef
go back to reference Joannopoulos, J.D., Johnson, S.G., Winn, J.N., Meade, R.D.: Photonic Crystals: Molding the Flow of Light, 2nd edn. Princeton University Press, Princeton, NJ (2008)MATH Joannopoulos, J.D., Johnson, S.G., Winn, J.N., Meade, R.D.: Photonic Crystals: Molding the Flow of Light, 2nd edn. Princeton University Press, Princeton, NJ (2008)MATH
go back to reference Ma, P., Jäckel, H.: Low crosstalk waveguide intersections in honeycomb lattice photonic crystals for tm-polarized light. J. Opt. 13(9), 095501 (2011)ADSCrossRef Ma, P., Jäckel, H.: Low crosstalk waveguide intersections in honeycomb lattice photonic crystals for tm-polarized light. J. Opt. 13(9), 095501 (2011)ADSCrossRef
go back to reference Ma, P., Kaspar, P., Fedoryshyn, Y., Strasser, P., Jäckel, H.: Inp-based planar photonic crystal waveguide in honeycomb lattice geometry for tm-polarized light. Opt. Lett. 34(10), 1558–1560 (2009)ADSCrossRef Ma, P., Kaspar, P., Fedoryshyn, Y., Strasser, P., Jäckel, H.: Inp-based planar photonic crystal waveguide in honeycomb lattice geometry for tm-polarized light. Opt. Lett. 34(10), 1558–1560 (2009)ADSCrossRef
go back to reference Novoselov, K.S., Geim, A.K., Morozov, S., Jiang, D., Katsnelson, M., Grigorieva, I., Dubonos, S., Firsov, A.: Two-dimensional gas of massless dirac fermions in graphene. Nature 438(7065), 197–200 (2005)ADSCrossRef Novoselov, K.S., Geim, A.K., Morozov, S., Jiang, D., Katsnelson, M., Grigorieva, I., Dubonos, S., Firsov, A.: Two-dimensional gas of massless dirac fermions in graphene. Nature 438(7065), 197–200 (2005)ADSCrossRef
go back to reference Novoselov, K.S., Fal, V., Colombo, L., Gellert, P., Schwab, M., Kim, K.A.: Roadmap for graphene. Nature 490(7419), 192–200 (2012)ADSCrossRef Novoselov, K.S., Fal, V., Colombo, L., Gellert, P., Schwab, M., Kim, K.A.: Roadmap for graphene. Nature 490(7419), 192–200 (2012)ADSCrossRef
go back to reference Ochiai, T., Onoda, M.: Photonic analog of graphene model and its extension: dirac cone, symmetry, and edge states. Phys. Rev. B 80(15), 155103 (2009)ADSCrossRef Ochiai, T., Onoda, M.: Photonic analog of graphene model and its extension: dirac cone, symmetry, and edge states. Phys. Rev. B 80(15), 155103 (2009)ADSCrossRef
go back to reference Ouyang, C., Xiong, Z., Zhao, F., Dong, B., Hu, X., Liu, X., Zi, J.: Slow light with low group-velocity dispersion at the edge of photonic graphene. Phys. Rev. A 84(1), 015801 (2011)ADSCrossRef Ouyang, C., Xiong, Z., Zhao, F., Dong, B., Hu, X., Liu, X., Zi, J.: Slow light with low group-velocity dispersion at the edge of photonic graphene. Phys. Rev. A 84(1), 015801 (2011)ADSCrossRef
go back to reference Pendry, J.B.: Calculating photonic band structure. J. Phys. Condens. Matter 8(9), 1085–1108 (1996)ADSCrossRef Pendry, J.B.: Calculating photonic band structure. J. Phys. Condens. Matter 8(9), 1085–1108 (1996)ADSCrossRef
go back to reference Polini, M., Guinea, F., Lewenstein, M., Manoharan, H.C., Pellegrini, V.: Artificial honeycomb lattices for electrons, atoms and photons. Nature Nanotechnol. 8(9), 625–633 (2013)ADSCrossRef Polini, M., Guinea, F., Lewenstein, M., Manoharan, H.C., Pellegrini, V.: Artificial honeycomb lattices for electrons, atoms and photons. Nature Nanotechnol. 8(9), 625–633 (2013)ADSCrossRef
go back to reference Poo, Y., Wu, Rx, Lin, Z., Yang, Y., Chan, C.: Experimental realization of self-guiding unidirectional electromagnetic edge states. Phys. Rev. Lett. 106(9), 093903 (2011) Poo, Y., Wu, Rx, Lin, Z., Yang, Y., Chan, C.: Experimental realization of self-guiding unidirectional electromagnetic edge states. Phys. Rev. Lett. 106(9), 093903 (2011)
go back to reference Prather, D.W., Sharkawy, A., Shi, S., Murakowski, J., Schneider, G.: Photonic Crystals: Theory, Applications, and Fabrication. Wiley, Hoboken, NJ (2009) Prather, D.W., Sharkawy, A., Shi, S., Murakowski, J., Schneider, G.: Photonic Crystals: Theory, Applications, and Fabrication. Wiley, Hoboken, NJ (2009)
go back to reference Puerto, D., Griol, A., Escalante, J.M., Pennec, Y., Djafari-Rouhani, B., Beugnot, J.C., Laude, V., Martínez, A.: Honeycomb photonic crystal waveguides in a suspended silicon slab. IEEE Photon. Technol. Lett. 24(22), 2056–2059 (2012)ADSCrossRef Puerto, D., Griol, A., Escalante, J.M., Pennec, Y., Djafari-Rouhani, B., Beugnot, J.C., Laude, V., Martínez, A.: Honeycomb photonic crystal waveguides in a suspended silicon slab. IEEE Photon. Technol. Lett. 24(22), 2056–2059 (2012)ADSCrossRef
go back to reference Sepkhanov, R., Bazaliy, Y.B., Beenakker, C.: Extremal transmission at the dirac point of a photonic band structure. Phys. Rev. A 75(6), 063813 (2007)ADSCrossRef Sepkhanov, R., Bazaliy, Y.B., Beenakker, C.: Extremal transmission at the dirac point of a photonic band structure. Phys. Rev. A 75(6), 063813 (2007)ADSCrossRef
go back to reference Wen, F., David, S., Checoury, X., El Kurdi, M., Boucaud, P.: Two-dimensional photonic crystals with large complete photonic band gaps in both te and tm polarizations. Opt. Express 16(16), 12278–12289 (2008)ADSCrossRef Wen, F., David, S., Checoury, X., El Kurdi, M., Boucaud, P.: Two-dimensional photonic crystals with large complete photonic band gaps in both te and tm polarizations. Opt. Express 16(16), 12278–12289 (2008)ADSCrossRef
go back to reference Wu, H., Citrin, D., Jiang, L., Li, X.: Polarization-independent single-mode waveguiding with honeycomb photonic crystals. IEEE Photon. Technol. Lett. 27(8), 840–843 (2015)ADSCrossRef Wu, H., Citrin, D., Jiang, L., Li, X.: Polarization-independent single-mode waveguiding with honeycomb photonic crystals. IEEE Photon. Technol. Lett. 27(8), 840–843 (2015)ADSCrossRef
go back to reference Xu, X., Gu, H., Zheng, Y., Wei, M., Zheng, D., Xiao, R., Qiang, Z.: Polarization beam splitter based on honeycomb-lattice photonic crystal ring resonators. J. Mod. Opt. 61(5), 373–378 (2014)ADSCrossRef Xu, X., Gu, H., Zheng, Y., Wei, M., Zheng, D., Xiao, R., Qiang, Z.: Polarization beam splitter based on honeycomb-lattice photonic crystal ring resonators. J. Mod. Opt. 61(5), 373–378 (2014)ADSCrossRef
go back to reference Ye, C., Hu, Z.: Computing equifrequency contours of two-dimensional photonic crystals by Dirichlet-to-Neumann maps. J. Mod. Opt. 64(2), 196–204 (2017)ADSMathSciNetCrossRef Ye, C., Hu, Z.: Computing equifrequency contours of two-dimensional photonic crystals by Dirichlet-to-Neumann maps. J. Mod. Opt. 64(2), 196–204 (2017)ADSMathSciNetCrossRef
go back to reference Yu, C.P., Chang, H.C.: Applications of the finite difference mode solution method to photonic crystal structures. Opt. Quantum Electron. 36(1–3), 145–163 (2004)CrossRef Yu, C.P., Chang, H.C.: Applications of the finite difference mode solution method to photonic crystal structures. Opt. Quantum Electron. 36(1–3), 145–163 (2004)CrossRef
go back to reference Yuan, J., Lu, Y.Y.: Computing photonic band structures by Dirichlet-to-Neumann maps: the triangular lattice. Opt. Commun. 273(1), 114–120 (2007)ADSCrossRef Yuan, J., Lu, Y.Y.: Computing photonic band structures by Dirichlet-to-Neumann maps: the triangular lattice. Opt. Commun. 273(1), 114–120 (2007)ADSCrossRef
go back to reference Zoli, R., Gnan, M., Castaldini, D., Bellanca, G., Bassi, P.: Reformulation of the plane wave method to model photonic crystals. Opt. Express 11(22), 2905–2910 (2003)ADSCrossRef Zoli, R., Gnan, M., Castaldini, D., Bellanca, G., Bassi, P.: Reformulation of the plane wave method to model photonic crystals. Opt. Express 11(22), 2905–2910 (2003)ADSCrossRef
Metadata
Title
Analyzing honeycomb photonic crystal waveguides by Dirichlet-to-Neumann maps
Authors
Mengmeng Wang
Zhen Hu
Publication date
01-06-2019
Publisher
Springer US
Published in
Optical and Quantum Electronics / Issue 6/2019
Print ISSN: 0306-8919
Electronic ISSN: 1572-817X
DOI
https://doi.org/10.1007/s11082-019-1890-0

Other articles of this Issue 6/2019

Optical and Quantum Electronics 6/2019 Go to the issue