Skip to main content
Top
Published in: Optical and Quantum Electronics 6/2019

01-06-2019

Design and analysis of graphene–MoS2 hybrid layer based SPR biosensor with TiO2–SiO2 nano film for formalin detection: numerical approach

Authors: Md. Biplob Hossain, Md. Masud Rana, Lway Faisal Abdulrazak, Saikat Mitra, Mostafizur Rahman

Published in: Optical and Quantum Electronics | Issue 6/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, a Surface Plasmon Resonance (SPR) biosensor has been numerically developed that used GrapheneMoS2AuTiO2SiO2 hybrid structure for the detection of formalin. This developed sensor has been sensed the presence the formalin based on attenuated total reflection (ATR) method by observing the change of “surface plasmon resonance angle-the change of minimum reflectance attributor” and “the resonance frequency characteristics (RFC)-maximum transmittance attributor”. Chitosan has been used as probe sensing medium to accelerate particular reaction with the formalin. Here, graphene is used as biomolecular recognition element because of its high adsorption ability and optical characteristics which helps to improve sensor sensitivity, MoS2 used for it has larger band gap, high fluroscence quenching ability, higher optical absorption efficiency, TiO2–SiO2 bilayer as the improvement of sensitivity and Gold (Au) as the sharp SPR curve. Numerical results give the impression that the variation of RFC and SPR angle for improper sensing of formalin is quiet negligible that confirms no formalin is detected whereas for proper sensing these change are considerably countable that confirms the detection of formalin. From the sensor sensitivity analysis, owing to add TiO2–SiO2 bilayer with Graphene–MoS2 Hybrid layer, maximum sensitivity of 85.375% has been numerically resulted. This high sensor performance is for taking advantages of Graphene surface high selectively which detect bio molecular compounds through pi-stacking force, larger work function (5.1 eV) of MoS2 which allows the high sensitive detection of bio targets and Rich plasmon happens at the TiO2–SiO2 interface.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Ambrosi, A., Sofer, Z., Pumera, M.: 2H → 1T phase transition and hydrogen evolution activity of MoS2, MoSe2, WS2 and WSe2 strongly depends on the MX2 composition. Chem. Commun. (Camb.) 51(40), 8450–8453 (2015)CrossRef Ambrosi, A., Sofer, Z., Pumera, M.: 2H → 1T phase transition and hydrogen evolution activity of MoS2, MoSe2, WS2 and WSe2 strongly depends on the MX2 composition. Chem. Commun. (Camb.) 51(40), 8450–8453 (2015)CrossRef
go back to reference Bechmann, I.E.: Determination of formaldehyde in frozen fish with formaldehyde dehydrogenase using a flow injection system with an incorporated gel-filtration chromatography column. Anal. Chim. Acta 320, 155–164 (1996)CrossRef Bechmann, I.E.: Determination of formaldehyde in frozen fish with formaldehyde dehydrogenase using a flow injection system with an incorporated gel-filtration chromatography column. Anal. Chim. Acta 320, 155–164 (1996)CrossRef
go back to reference Choi, S.H., Kim, Y.L., Byun, K.M.: Graphene-on-silver substrates for sensitive surface plasmon resonance imaging biosensors. Opt. Express 19, 458–466 (2011)ADSCrossRef Choi, S.H., Kim, Y.L., Byun, K.M.: Graphene-on-silver substrates for sensitive surface plasmon resonance imaging biosensors. Opt. Express 19, 458–466 (2011)ADSCrossRef
go back to reference Earp, R.L., Dessy, R.E.: Surface plasmon resonance, chapter contribution. In: Ramsay, G. (ed.) Commercial Biosensors: Applications to Clinical, Bioprocess, and Environmental Samples. Wiley (1998) Earp, R.L., Dessy, R.E.: Surface plasmon resonance, chapter contribution. In: Ramsay, G. (ed.) Commercial Biosensors: Applications to Clinical, Bioprocess, and Environmental Samples. Wiley (1998)
go back to reference Fano, U.: The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld’s waves). J. Opt. Soc. Am. 31, 213–222 (1941)ADSCrossRef Fano, U.: The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld’s waves). J. Opt. Soc. Am. 31, 213–222 (1941)ADSCrossRef
go back to reference Fu, H., Zhang, S., Chen, H., Weng, J.: Graphene enhances the sensitivity of fiber-optic surface plasmon resonance biosensor. IEEE Sens. J. 15(10), 5478–5482 (2015)ADSCrossRef Fu, H., Zhang, S., Chen, H., Weng, J.: Graphene enhances the sensitivity of fiber-optic surface plasmon resonance biosensor. IEEE Sens. J. 15(10), 5478–5482 (2015)ADSCrossRef
go back to reference Homola, J.: Present and future of surface plasmon resonance biosensors. Anal. Bioanal. Chem. 377(3), 528–539 (2003)CrossRef Homola, J.: Present and future of surface plasmon resonance biosensors. Anal. Bioanal. Chem. 377(3), 528–539 (2003)CrossRef
go back to reference Hossain, M.B., Rana, M.M.: DNA hybridization detection based on resonance frequency readout in grapheme on Au SPR biosensor, J. Sens. Article no. 347595 (2016) Hossain, M.B., Rana, M.M.: DNA hybridization detection based on resonance frequency readout in grapheme on Au SPR biosensor, J. Sens. Article no. 347595 (2016)
go back to reference Jorgenson, R.C., Yee, S.S.: A fiber-optic chemical sensor based on surface plasmon resonance. Sens. Actuators, B 12, 213–220 (1993a)CrossRef Jorgenson, R.C., Yee, S.S.: A fiber-optic chemical sensor based on surface plasmon resonance. Sens. Actuators, B 12, 213–220 (1993a)CrossRef
go back to reference Jorgenson, R.C., Yee, S.S.: A fiber-optic chemical sensor based on surface plasmon resonance. Sens. Actuators, B 12, 213–220 (1993b)CrossRef Jorgenson, R.C., Yee, S.S.: A fiber-optic chemical sensor based on surface plasmon resonance. Sens. Actuators, B 12, 213–220 (1993b)CrossRef
go back to reference Maier, S.A.: Plasmonics: Fundamentals and Applications. Springer, New York (2007)CrossRef Maier, S.A.: Plasmonics: Fundamentals and Applications. Springer, New York (2007)CrossRef
go back to reference Maurya, J.B., Prajapati, Y.K., Singh, V., Saini, J.P.: Sensitivity enhancement of surface plasmon resonance sensor based on graphene–MoS2 hybrid structure with TiO2–SiO2 composite layer. Appl. Phys. A 121(2), 525–533 (2015)ADSCrossRef Maurya, J.B., Prajapati, Y.K., Singh, V., Saini, J.P.: Sensitivity enhancement of surface plasmon resonance sensor based on graphene–MoS2 hybrid structure with TiO2–SiO2 composite layer. Appl. Phys. A 121(2), 525–533 (2015)ADSCrossRef
go back to reference Mayorga-Martinez, C.C., Ambrosi, A., Eng, A.Y.S., Sofer, Z., Pumera, M.: Metallic 1T-WS2 for selective impedimetric vapor sensing. Adv. Funct. Mater. 25(35), 5611–5616 (2015)CrossRef Mayorga-Martinez, C.C., Ambrosi, A., Eng, A.Y.S., Sofer, Z., Pumera, M.: Metallic 1T-WS2 for selective impedimetric vapor sensing. Adv. Funct. Mater. 25(35), 5611–5616 (2015)CrossRef
go back to reference Ngamchana, S., Surareungchai, W.: Sub-millimolar determination of formalin by pulsed amperometric detection. Anal. Chim. Acta 510, 195–201 (2004)CrossRef Ngamchana, S., Surareungchai, W.: Sub-millimolar determination of formalin by pulsed amperometric detection. Anal. Chim. Acta 510, 195–201 (2004)CrossRef
go back to reference Noor Aini, B., Siddiquee, S., Ampon, K.: Development of formaldehyde biosensor for determination of formalin in fish samples; malabar red snapper (Lutjanus malabaricus) and longtail tuna (Thunnus tonggol). Biosensors 6, 32 (2016)CrossRef Noor Aini, B., Siddiquee, S., Ampon, K.: Development of formaldehyde biosensor for determination of formalin in fish samples; malabar red snapper (Lutjanus malabaricus) and longtail tuna (Thunnus tonggol). Biosensors 6, 32 (2016)CrossRef
go back to reference Noordiana, N., Fatimah, A.B., Farhana, Y.C.: Formaldehyde content and quality characteristics of selected fish and seafood from wet markets. Int. Food Res. J. 18, 125–136 (2011) Noordiana, N., Fatimah, A.B., Farhana, Y.C.: Formaldehyde content and quality characteristics of selected fish and seafood from wet markets. Int. Food Res. J. 18, 125–136 (2011)
go back to reference Nylander, C., Liedberg, B., Lind, T.: Gas detection by means of surface plasmons resonance. Sens. Actuators, B 3, 79–88 (1982)CrossRef Nylander, C., Liedberg, B., Lind, T.: Gas detection by means of surface plasmons resonance. Sens. Actuators, B 3, 79–88 (1982)CrossRef
go back to reference O’Brien, M., Lee, K., Morrish, R., Berner, N.C., McEvoy, N., Wolden, C.A., Duesberg, G.S.: Plasma assisted synthesis of WS2 for gas sensing applications. Chem. Phys. Lett. 615, 6–10 (2014)ADSCrossRef O’Brien, M., Lee, K., Morrish, R., Berner, N.C., McEvoy, N., Wolden, C.A., Duesberg, G.S.: Plasma assisted synthesis of WS2 for gas sensing applications. Chem. Phys. Lett. 615, 6–10 (2014)ADSCrossRef
go back to reference Pumera, M.: Graphene in biosensing. Mater. Today 14(7–8), 308–315 (2011)CrossRef Pumera, M.: Graphene in biosensing. Mater. Today 14(7–8), 308–315 (2011)CrossRef
go back to reference Reather, H.: Surface plasmons on smooth and rough surfaces and on gratings, vol. 111. Springer, Berlin (1988)CrossRef Reather, H.: Surface plasmons on smooth and rough surfaces and on gratings, vol. 111. Springer, Berlin (1988)CrossRef
go back to reference Schedin, F., Lidorikis, E., Lombardo, A., Vasyl, G.K., Andre, K.G., Alexander, N.G., Novoselov, K.S., Ferrari, A.C.: Surface-enhanced Raman spectroscopy of graphene. ACS Nano 4, 5617–5626 (2010)CrossRef Schedin, F., Lidorikis, E., Lombardo, A., Vasyl, G.K., Andre, K.G., Alexander, N.G., Novoselov, K.S., Ferrari, A.C.: Surface-enhanced Raman spectroscopy of graphene. ACS Nano 4, 5617–5626 (2010)CrossRef
go back to reference Shushama, K.N., Rana, M.M., Inum, R., Hossain, M.B.: Graphene coated fiber optic surface plasmon resonance biosensor for the DNA hybridization detection: simulation analysis. Opt. Commun. 383, 186–190 (2017)ADSCrossRef Shushama, K.N., Rana, M.M., Inum, R., Hossain, M.B.: Graphene coated fiber optic surface plasmon resonance biosensor for the DNA hybridization detection: simulation analysis. Opt. Commun. 383, 186–190 (2017)ADSCrossRef
go back to reference Sreekanth, K.V., Zeng, S., Yong, K.-T., Yu, T.: Sensitivity enhanced biosensor using graphene-based one-dimensional photonic crystal. Sens. Actuator B Chem. 182, 424–428 (2013)CrossRef Sreekanth, K.V., Zeng, S., Yong, K.-T., Yu, T.: Sensitivity enhanced biosensor using graphene-based one-dimensional photonic crystal. Sens. Actuator B Chem. 182, 424–428 (2013)CrossRef
go back to reference Thakur, J.S., Auner, G.W., Haddad, D.B., Naik, R., Naik, V.M.: Disorder effects on infrared reflection spectra of InN films. J. Appl. Phys. 95(9), 4795–4801 (2004)ADSCrossRef Thakur, J.S., Auner, G.W., Haddad, D.B., Naik, R., Naik, V.M.: Disorder effects on infrared reflection spectra of InN films. J. Appl. Phys. 95(9), 4795–4801 (2004)ADSCrossRef
go back to reference Tubb, A.J.C., Payne, F.P., Millington, R.B., Lowe, C.R.: Singlemode optical fiber surface plasma wave chemical sensor. Sens. Actuators, B 41, 71–79 (1997)CrossRef Tubb, A.J.C., Payne, F.P., Millington, R.B., Lowe, C.R.: Singlemode optical fiber surface plasma wave chemical sensor. Sens. Actuators, B 41, 71–79 (1997)CrossRef
go back to reference Theisen, A., Johann, C., Deacon, M.P., Harding, S.E.: Refractive increment data-book for polymer and biomolecular scientist (1999) Theisen, A., Johann, C., Deacon, M.P., Harding, S.E.: Refractive increment data-book for polymer and biomolecular scientist (1999)
go back to reference Yeh, T.S., Lin, T.C., Chen, C.C., Wen, H.M.: Analysis of free and bound formaldehyde in squid and squidproducts by gas chromatography-mass spectrometry. J. Food Drug Anal. 21, 190–197 (2013)CrossRef Yeh, T.S., Lin, T.C., Chen, C.C., Wen, H.M.: Analysis of free and bound formaldehyde in squid and squidproducts by gas chromatography-mass spectrometry. J. Food Drug Anal. 21, 190–197 (2013)CrossRef
Metadata
Title
Design and analysis of graphene–MoS2 hybrid layer based SPR biosensor with TiO2–SiO2 nano film for formalin detection: numerical approach
Authors
Md. Biplob Hossain
Md. Masud Rana
Lway Faisal Abdulrazak
Saikat Mitra
Mostafizur Rahman
Publication date
01-06-2019
Publisher
Springer US
Published in
Optical and Quantum Electronics / Issue 6/2019
Print ISSN: 0306-8919
Electronic ISSN: 1572-817X
DOI
https://doi.org/10.1007/s11082-019-1911-z

Other articles of this Issue 6/2019

Optical and Quantum Electronics 6/2019 Go to the issue