Skip to main content
Top

09-04-2024

ANN-based estimation of dispersion characteristics of slotted photonic crystal waveguides

Authors: Akash Kumar Pradhan, Chandra Prakash, Tanmoy Datta, Mrinal Sen, Haraprasad Mondal

Published in: Journal of Computational Electronics

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, the dispersion characteristics of slotted photonic crystal waveguides (SPCWs) have been estimated for any arbitrary set of structural parameters using machine learning-based artificial neural network (ANN). The machine learning-based technique yields faster solutions of the three-dimensional eigenvalue equations, which otherwise require substantial time using the conventional plane wave expansion (PWE)-based numerical simulations. Most importantly, the novel contribution of the work lies in estimating the structural parameters of the SPCWs from the given specifications of the dispersion characteristics through an inverse computation. A simple feed-forward neural network has been employed for both the forward and inverse estimations. The computation performances using both the ANN model and PWE simulations are analyzed and compared. The research offers significant implications for the field of photonics. By employing machine learning techniques, particularly ANNs, researchers and engineers can swiftly and efficiently analyze the dispersion properties of SPCWs, facilitating rapid prototyping and optimization of photonic devices. Additionally, the capability to infer structural parameters from desired dispersion characteristics streamlines the design process, potentially leading to the development of customized waveguides tailored to specific applications.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Silicon photonics market size and share analysis growth trends and forecasts(2023-2028). available online: https://www.mordorintelligence.com/industry-reports/silicon-photonics-market (2023) Silicon photonics market size and share analysis growth trends and forecasts(2023-2028). available online: https://​www.​mordorintelligen​ce.​com/​industry-reports/​silicon-photonics-market (2023)
2.
go back to reference Jalali, B., Fathpour, S.: Silicon photonics. J. Lightwave Technol. 24(12), 4600–4615 (2006)CrossRef Jalali, B., Fathpour, S.: Silicon photonics. J. Lightwave Technol. 24(12), 4600–4615 (2006)CrossRef
3.
go back to reference Saghaei, H., Van, V.: Broadband mid-infrared supercontinuum generation in dispersion-engineered silicon-on-insulator waveguide. J. Opt. Soc. Am. B 36(2), 193–202 (2019)CrossRef Saghaei, H., Van, V.: Broadband mid-infrared supercontinuum generation in dispersion-engineered silicon-on-insulator waveguide. J. Opt. Soc. Am. B 36(2), 193–202 (2019)CrossRef
4.
go back to reference Saghaei, H.: Dispersion-engineered microstructured optical fiber for mid-infrared supercontinuum generation. Appl. Opt. 57(20), 5591–5598 (2018)CrossRef Saghaei, H.: Dispersion-engineered microstructured optical fiber for mid-infrared supercontinuum generation. Appl. Opt. 57(20), 5591–5598 (2018)CrossRef
5.
go back to reference Aliee, M., Mozaffari, M.H., Saghaei, H.: Dispersion-flattened photonic quasicrystal optofluidic fiber for telecom C band operation. Photon. Nanostructures-Fundam. Appl. 40, 100797 (2020)CrossRef Aliee, M., Mozaffari, M.H., Saghaei, H.: Dispersion-flattened photonic quasicrystal optofluidic fiber for telecom C band operation. Photon. Nanostructures-Fundam. Appl. 40, 100797 (2020)CrossRef
6.
go back to reference Saghaei, H., Elyasi, P., Shastri, B.J.: Sinusoidal and rectangular Bragg grating filters: design, fabrication, and comparative analysis. J. Appl. Phys. 132(6), 064501 (2022)CrossRef Saghaei, H., Elyasi, P., Shastri, B.J.: Sinusoidal and rectangular Bragg grating filters: design, fabrication, and comparative analysis. J. Appl. Phys. 132(6), 064501 (2022)CrossRef
7.
go back to reference Diouf, M., Salem, A.B., Cherif, R., Saghaei, H., Wague, A.: Super-flat coherent supercontinuum source in as 38.8 se 6.12 chalcogenide photonic crystal fiber with all-normal dispersion engineering at a very low input energy. Appl. Opt. 56(2), 163–169 (2017)CrossRef Diouf, M., Salem, A.B., Cherif, R., Saghaei, H., Wague, A.: Super-flat coherent supercontinuum source in as 38.8 se 6.12 chalcogenide photonic crystal fiber with all-normal dispersion engineering at a very low input energy. Appl. Opt. 56(2), 163–169 (2017)CrossRef
8.
go back to reference Naghizade, S., Didari-Bader, A., Saghaei, H.: Ultra-fast tunable optoelectronic 2-to-4 binary decoder using graphene-coated silica rods in photonic crystal ring resonators. Opt. Quant. Electron. 54(11), 767 (2022)CrossRef Naghizade, S., Didari-Bader, A., Saghaei, H.: Ultra-fast tunable optoelectronic 2-to-4 binary decoder using graphene-coated silica rods in photonic crystal ring resonators. Opt. Quant. Electron. 54(11), 767 (2022)CrossRef
9.
go back to reference Nayyeri Raad, A., Saghaei, H., Mehrabani, Y.S.: An optical 2-to-4 decoder based on photonic crystal x-shaped resonators covered by graphene shells. Opt. Quant. Electron. 55(5), 452 (2023)CrossRef Nayyeri Raad, A., Saghaei, H., Mehrabani, Y.S.: An optical 2-to-4 decoder based on photonic crystal x-shaped resonators covered by graphene shells. Opt. Quant. Electron. 55(5), 452 (2023)CrossRef
10.
go back to reference Ebnali-Heidari, M., Dehghan, F., Saghaei, H., Koohi-Kamali, F., Moravvej-Farshi, M.: Dispersion engineering of photonic crystal fibers by means of fluidic infiltration. J. Mod. Opt. 59(16), 1384–1390 (2012)CrossRef Ebnali-Heidari, M., Dehghan, F., Saghaei, H., Koohi-Kamali, F., Moravvej-Farshi, M.: Dispersion engineering of photonic crystal fibers by means of fluidic infiltration. J. Mod. Opt. 59(16), 1384–1390 (2012)CrossRef
11.
go back to reference Datta, T., Sen, M.: Characterization of slotted photonic crystal waveguide and its application in nonlinear optics. Superlattices Microstruct. 109, 107–116 (2017)CrossRef Datta, T., Sen, M.: Characterization of slotted photonic crystal waveguide and its application in nonlinear optics. Superlattices Microstruct. 109, 107–116 (2017)CrossRef
12.
go back to reference Sen, M., Datta, T.: Slotted photonic crystal waveguide: an effective platform for efficient nonlinear photonic applications. In: Photonics, Plasmonics and Information Optics, pp. 135–171. CRC Press, USA (2021)CrossRef Sen, M., Datta, T.: Slotted photonic crystal waveguide: an effective platform for efficient nonlinear photonic applications. In: Photonics, Plasmonics and Information Optics, pp. 135–171. CRC Press, USA (2021)CrossRef
13.
go back to reference Pradhan, A.K., Sen, M., Datta, T.: Raman mediated solitonic pulse compression. JOSA B 39(6), 1686–1693 (2022)CrossRef Pradhan, A.K., Sen, M., Datta, T.: Raman mediated solitonic pulse compression. JOSA B 39(6), 1686–1693 (2022)CrossRef
14.
go back to reference Pradhan, A.K., Sen, M., Datta, T.: Raman based on-chip photonic quantizers for ADCs. JOSA B 40(5), 1076–1082 (2023)CrossRef Pradhan, A.K., Sen, M., Datta, T.: Raman based on-chip photonic quantizers for ADCs. JOSA B 40(5), 1076–1082 (2023)CrossRef
15.
go back to reference Datta, T., Sen, M.: Led pumped micron-scale all-silicon Raman amplifier. Superlattices Microstruct. 110, 273–280 (2017)CrossRef Datta, T., Sen, M.: Led pumped micron-scale all-silicon Raman amplifier. Superlattices Microstruct. 110, 273–280 (2017)CrossRef
16.
go back to reference Pradhan, A.K., Sen, M.: An integrable all-silicon slotted photonic crystal Raman laser. J. Appl. Phys. 126(23), 233103 (2019)CrossRef Pradhan, A.K., Sen, M.: An integrable all-silicon slotted photonic crystal Raman laser. J. Appl. Phys. 126(23), 233103 (2019)CrossRef
17.
go back to reference Pradhan, A.K., Sen, M., Datta, T.: Led pumped Raman laser: towards the design of an on-chip all-silicon laser. Opt. Laser Technol. 147, 107634 (2022)CrossRef Pradhan, A.K., Sen, M., Datta, T.: Led pumped Raman laser: towards the design of an on-chip all-silicon laser. Opt. Laser Technol. 147, 107634 (2022)CrossRef
18.
go back to reference Datta, T., Sen, M.: Integrable all-optical pass switch. Electron. Lett. 54(25), 1446–1448 (2018)CrossRef Datta, T., Sen, M.: Integrable all-optical pass switch. Electron. Lett. 54(25), 1446–1448 (2018)CrossRef
19.
go back to reference Datta, T., Sen, M.: All-optical logic inverter for large-scale integration in silicon photonic circuits. IET Optoelectron. 14(5), 285–291 (2020)CrossRef Datta, T., Sen, M.: All-optical logic inverter for large-scale integration in silicon photonic circuits. IET Optoelectron. 14(5), 285–291 (2020)CrossRef
20.
go back to reference Datta, T., Sen, M.: Raman mediated ultrafast all-optical nor gate. Appl. Opt. 59(21), 6352–6359 (2020)CrossRef Datta, T., Sen, M.: Raman mediated ultrafast all-optical nor gate. Appl. Opt. 59(21), 6352–6359 (2020)CrossRef
21.
go back to reference Kumar, S., Sen, M.: Integrable all-optical not gate using nonlinear photonic crystal MZI for photonic integrated circuit. JOSA B 37(2), 359–369 (2020)MathSciNetCrossRef Kumar, S., Sen, M.: Integrable all-optical not gate using nonlinear photonic crystal MZI for photonic integrated circuit. JOSA B 37(2), 359–369 (2020)MathSciNetCrossRef
22.
go back to reference Scullion, M.G., Krauss, T.F., Di Falco, A.: Slotted photonic crystal sensors. Sensors 13(3), 3675–3710 (2013)CrossRef Scullion, M.G., Krauss, T.F., Di Falco, A.: Slotted photonic crystal sensors. Sensors 13(3), 3675–3710 (2013)CrossRef
23.
go back to reference Wülbern, J.H., Hampe, J., Petrov, A., Eich, M., Luo, J., Jen, A.K.-Y., Di Falco, A., Krauss, T.F., Bruns, J.: Electro-optic modulation in slotted resonant photonic crystal heterostructures. Appl. Phys. Lett. 94(24), 241107 (2009)CrossRef Wülbern, J.H., Hampe, J., Petrov, A., Eich, M., Luo, J., Jen, A.K.-Y., Di Falco, A., Krauss, T.F., Bruns, J.: Electro-optic modulation in slotted resonant photonic crystal heterostructures. Appl. Phys. Lett. 94(24), 241107 (2009)CrossRef
24.
go back to reference Lin, S., Hu, J., Kimerling, L., Crozier, K.: Design of nanoslotted photonic crystal waveguide cavities for single nanoparticle trapping and detection. Opt. Lett. 34(21), 3451–3453 (2009)CrossRef Lin, S., Hu, J., Kimerling, L., Crozier, K.: Design of nanoslotted photonic crystal waveguide cavities for single nanoparticle trapping and detection. Opt. Lett. 34(21), 3451–3453 (2009)CrossRef
25.
go back to reference Caër, C., Combrié, S., Le Roux, X., Cassan, E., De Rossi, A.: Extreme optical confinement in a slotted photonic crystal waveguide. Appl. Phys. Lett. 105(12), 121111 (2014)CrossRef Caër, C., Combrié, S., Le Roux, X., Cassan, E., De Rossi, A.: Extreme optical confinement in a slotted photonic crystal waveguide. Appl. Phys. Lett. 105(12), 121111 (2014)CrossRef
26.
go back to reference Joannopoulos, J.D., Johnson, S.G., Winn, J.N., Meade, R.D.: Molding the flow of light. Princet. Univ. Press., Princeton (2008) Joannopoulos, J.D., Johnson, S.G., Winn, J.N., Meade, R.D.: Molding the flow of light. Princet. Univ. Press., Princeton (2008)
27.
go back to reference Prather, D.W., Shi, S., Sharkawy, A., Murakowski, J., Schneider, G.: Photonic crystals. Theory, Aplications and Fabrication (2009) Prather, D.W., Shi, S., Sharkawy, A., Murakowski, J., Schneider, G.: Photonic crystals. Theory, Aplications and Fabrication (2009)
28.
go back to reference Gao, D., Zhou, Z.: Nonlinear equation method for band structure calculations of photonic crystal slabs. Appl. Phys. Lett. 88(16), 163105 (2006)CrossRef Gao, D., Zhou, Z.: Nonlinear equation method for band structure calculations of photonic crystal slabs. Appl. Phys. Lett. 88(16), 163105 (2006)CrossRef
29.
go back to reference Chugh, S., Ghosh, S., Gulistan, A., Rahman, B.: Machine learning regression approach to the nanophotonic waveguide analyses. J. Lightwave Technol. 37(24), 6080–6089 (2019)CrossRef Chugh, S., Ghosh, S., Gulistan, A., Rahman, B.: Machine learning regression approach to the nanophotonic waveguide analyses. J. Lightwave Technol. 37(24), 6080–6089 (2019)CrossRef
30.
go back to reference Liu, A., Lin, T., Han, H., Zhang, X., Chen, Z., Gan, F., Lv, H., Liu, X.: Analyzing modal power in multi-mode waveguide via machine learning. Opt. Express 26(17), 22100–22109 (2018)CrossRef Liu, A., Lin, T., Han, H., Zhang, X., Chen, Z., Gan, F., Lv, H., Liu, X.: Analyzing modal power in multi-mode waveguide via machine learning. Opt. Express 26(17), 22100–22109 (2018)CrossRef
31.
go back to reference Nikulin, A., Zisman, I., Eich, M., Petrov, A.Y., Itin, A.: Machine learning models for photonic crystals band diagram prediction and gap Optimisation. Photon. Nanostructures-Fundam. Appl. 52, 101076 (2022)CrossRef Nikulin, A., Zisman, I., Eich, M., Petrov, A.Y., Itin, A.: Machine learning models for photonic crystals band diagram prediction and gap Optimisation. Photon. Nanostructures-Fundam. Appl. 52, 101076 (2022)CrossRef
32.
go back to reference Christensen, T., Loh, C., Picek, S., Jakobović, D., Jing, L., Fisher, S., Ceperic, V., Joannopoulos, J.D., Soljačić, M.: Predictive and generative machine learning models for photonic crystals. Nanophotonics 9(13), 4183–4192 (2020)CrossRef Christensen, T., Loh, C., Picek, S., Jakobović, D., Jing, L., Fisher, S., Ceperic, V., Joannopoulos, J.D., Soljačić, M.: Predictive and generative machine learning models for photonic crystals. Nanophotonics 9(13), 4183–4192 (2020)CrossRef
33.
go back to reference Abe, R., Takeda, T., Shiratori, R., Shirakawa, S., Saito, S., Baba, T.: Optimization of an h0 photonic crystal nanocavity using machine learning. Opt. Lett. 45(2), 319–322 (2020)CrossRef Abe, R., Takeda, T., Shiratori, R., Shirakawa, S., Saito, S., Baba, T.: Optimization of an h0 photonic crystal nanocavity using machine learning. Opt. Lett. 45(2), 319–322 (2020)CrossRef
34.
go back to reference Asano, T., Noda, S.: Optimization of photonic crystal nanocavities based on deep learning. Opt. Express 26(25), 32704–32717 (2018)CrossRef Asano, T., Noda, S.: Optimization of photonic crystal nanocavities based on deep learning. Opt. Express 26(25), 32704–32717 (2018)CrossRef
35.
go back to reference Li, R., Gu, X., Li, K., Huang, Y., Li, Z., Zhang, Z.: Deep learning-based modeling of photonic crystal nanocavities. Opt. Mater. Express 11(7), 2122–2133 (2021)CrossRef Li, R., Gu, X., Li, K., Huang, Y., Li, Z., Zhang, Z.: Deep learning-based modeling of photonic crystal nanocavities. Opt. Mater. Express 11(7), 2122–2133 (2021)CrossRef
36.
go back to reference Chugh, S., Gulistan, A., Ghosh, S., Rahman, B.: Machine learning approach for computing optical properties of a photonic crystal fiber. Opt. Express 27(25), 36414–36425 (2019)CrossRef Chugh, S., Gulistan, A., Ghosh, S., Rahman, B.: Machine learning approach for computing optical properties of a photonic crystal fiber. Opt. Express 27(25), 36414–36425 (2019)CrossRef
37.
go back to reference Boscolo, S., Finot, C.: Artificial neural networks for nonlinear pulse shaping in optical fibers. Opt. Laser Technol. 131, 106439 (2020)CrossRef Boscolo, S., Finot, C.: Artificial neural networks for nonlinear pulse shaping in optical fibers. Opt. Laser Technol. 131, 106439 (2020)CrossRef
38.
go back to reference Yao, Q., Yang, H., Zhu, R., Yu, A., Bai, W., Tan, Y., Zhang, J., Xiao, H.: Core, mode, and spectrum assignment based on machine learning in space division multiplexing elastic optical networks. IEEE Access 6, 15898–15907 (2018)CrossRef Yao, Q., Yang, H., Zhu, R., Yu, A., Bai, W., Tan, Y., Zhang, J., Xiao, H.: Core, mode, and spectrum assignment based on machine learning in space division multiplexing elastic optical networks. IEEE Access 6, 15898–15907 (2018)CrossRef
39.
go back to reference Huang, X., Cao, H., Jia, B.: Optimization of Levenberg Marquardt algorithm applied to nonlinear systems. Processes 11(6), 1794 (2023)CrossRef Huang, X., Cao, H., Jia, B.: Optimization of Levenberg Marquardt algorithm applied to nonlinear systems. Processes 11(6), 1794 (2023)CrossRef
40.
go back to reference Antos, R., Vozda, V., Veis, M.: Plane wave expansion method used to engineer photonic crystal sensors with high efficiency. Opt. Express 22(3), 2562–2577 (2014)CrossRef Antos, R., Vozda, V., Veis, M.: Plane wave expansion method used to engineer photonic crystal sensors with high efficiency. Opt. Express 22(3), 2562–2577 (2014)CrossRef
41.
go back to reference Schwahn, C.F., Schulz, S.A.: Accurate and efficient prediction of photonic crystal waveguide bandstructures using neural networks. Opt. Continuum 2(6), 1479–1489 (2023)CrossRef Schwahn, C.F., Schulz, S.A.: Accurate and efficient prediction of photonic crystal waveguide bandstructures using neural networks. Opt. Continuum 2(6), 1479–1489 (2023)CrossRef
Metadata
Title
ANN-based estimation of dispersion characteristics of slotted photonic crystal waveguides
Authors
Akash Kumar Pradhan
Chandra Prakash
Tanmoy Datta
Mrinal Sen
Haraprasad Mondal
Publication date
09-04-2024
Publisher
Springer US
Published in
Journal of Computational Electronics
Print ISSN: 1569-8025
Electronic ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-024-02162-9