Skip to main content
Top
Published in: Neural Computing and Applications 3-4/2013

01-09-2013 | Original Article

ANN-based prediction of ferrite fraction in continuous cooling of microalloyed steels

Authors: Gholamreza Khalaj, Mahdi Khoeini, Meysam Khakian-Qomi

Published in: Neural Computing and Applications | Issue 3-4/2013

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In the present study, an artificial neural networks-based model was developed to predict the ferrite fraction of microalloyed steels during continuous cooling. Fourteen parameters affecting the ferrite fraction were considered as inputs, including the cooling rate, initial austenite grain size, and different chemical compositions. The network was then trained to predict the ferrite fraction amounts as outputs. A multilayer feed-forward back-propagation network was developed and trained using experimental data form literatures. The predicted values are in very good agreement with the measured ones indicating that the developed model is very accurate and has the great ability for predicting the ferrite fraction.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Pandi R (1998) Ph.D. Thesis, The University of British Columbia, Vancouver, Canada Pandi R (1998) Ph.D. Thesis, The University of British Columbia, Vancouver, Canada
2.
go back to reference Militzer M, Pandi R, Hawbolt EB (1996) Ferrite nucleation and growth during continuous cooling. Metall Mater Trans A 27:1547–1556CrossRef Militzer M, Pandi R, Hawbolt EB (1996) Ferrite nucleation and growth during continuous cooling. Metall Mater Trans A 27:1547–1556CrossRef
3.
go back to reference Militzer M, Hawbolt EB, Meadowcroft TR (2000) Microstructural model for hot strip rolling of high-strength low-alloy steels. Metall Mater Trans A 31:1247–1259CrossRef Militzer M, Hawbolt EB, Meadowcroft TR (2000) Microstructural model for hot strip rolling of high-strength low-alloy steels. Metall Mater Trans A 31:1247–1259CrossRef
4.
go back to reference Militzer M, Hawbolt EB, Meadowcroft TR (1995) Ferrite nucleation during continuous cooling. In: Hawbolt EB, Yue S (eds) Phase transformations during the thermal/mechanical processing of steel. The Metallurgical Society of CIM, Montreal, pp 445–458 Militzer M, Hawbolt EB, Meadowcroft TR (1995) Ferrite nucleation during continuous cooling. In: Hawbolt EB, Yue S (eds) Phase transformations during the thermal/mechanical processing of steel. The Metallurgical Society of CIM, Montreal, pp 445–458
5.
go back to reference Pandi R, Militzer M, Hawbolt EB, Meadowcroft TR (1995) Modelling of austenite decomposition kinetics in steels during run-out table cooling. In: Hawbolt EB, Yue S (eds) Phase transformations during the thermal/mechanical processing of steel. The Metallurgical Society of CIM, Montreal, pp 459–471 Pandi R, Militzer M, Hawbolt EB, Meadowcroft TR (1995) Modelling of austenite decomposition kinetics in steels during run-out table cooling. In: Hawbolt EB, Yue S (eds) Phase transformations during the thermal/mechanical processing of steel. The Metallurgical Society of CIM, Montreal, pp 459–471
6.
go back to reference Porter DA, Easterling KE (1992) Phase transformations in metals and alloys, 2nd edn. Chapman & Hall, LondonCrossRef Porter DA, Easterling KE (1992) Phase transformations in metals and alloys, 2nd edn. Chapman & Hall, LondonCrossRef
7.
go back to reference Speich GR, Scoonover TM (1988) Continuous-cooling-transformation behavior and strength of HSLA-80 (A710) steel plates. In: DeArdo AJ (ed) Processing, microstructure and properties of HSLA steels. AIME, New York, pp 263–286 Speich GR, Scoonover TM (1988) Continuous-cooling-transformation behavior and strength of HSLA-80 (A710) steel plates. In: DeArdo AJ (ed) Processing, microstructure and properties of HSLA steels. AIME, New York, pp 263–286
8.
go back to reference Pereloma EV, Boyd JD (1996) Effects of simulated on line accelerated cooling processing on transformation temperatures and microstructure in microalloyed steels part 1—strip processing. Mater Sci Technol 12:808–817CrossRef Pereloma EV, Boyd JD (1996) Effects of simulated on line accelerated cooling processing on transformation temperatures and microstructure in microalloyed steels part 1—strip processing. Mater Sci Technol 12:808–817CrossRef
9.
go back to reference Coldren AP, Cryderman RL, Semchyshen M (1969) Steel strengthening mechanisms, AMAX, p 17 Coldren AP, Cryderman RL, Semchyshen M (1969) Steel strengthening mechanisms, AMAX, p 17
10.
go back to reference Heedman P, Sjostrom A (1983) M.Jarl, HSLA Steels Technology and Applications, organized by M.Korchinsky, Philadelphia, PA, ASM, 121 Heedman P, Sjostrom A (1983) M.Jarl, HSLA Steels Technology and Applications, organized by M.Korchinsky, Philadelphia, PA, ASM, 121
11.
go back to reference Grozier JD (1977) Microalloying’75. Union Carbide Corp, New York, p 241 Grozier JD (1977) Microalloying’75. Union Carbide Corp, New York, p 241
12.
go back to reference Petkov P (2004) Austenite decomposition of low carbon high strength steels during continuous cooling. Master’s thesis, The University of British Columbia Petkov P (2004) Austenite decomposition of low carbon high strength steels during continuous cooling. Master’s thesis, The University of British Columbia
13.
go back to reference Thewils G (1994) Transformation kinetics of ferrous weld metals. Mater Sci Technol 10:110–125 Thewils G (1994) Transformation kinetics of ferrous weld metals. Mater Sci Technol 10:110–125
14.
go back to reference Nakata N, Militzer Microstructural (2000) Mechanical working and steel processing conference proceedings, vol XXXVIII. ISS, Warrendale, PA, p 813 Nakata N, Militzer Microstructural (2000) Mechanical working and steel processing conference proceedings, vol XXXVIII. ISS, Warrendale, PA, p 813
15.
go back to reference Umemoto M, Komatsubara N, Tamura I (1980) Prediction of hardenability effects from isothermal transformation kinetics. J Heat Treat 1:57–64 Umemoto M, Komatsubara N, Tamura I (1980) Prediction of hardenability effects from isothermal transformation kinetics. J Heat Treat 1:57–64
16.
go back to reference Bradley JR, Aaronson HI (1981) Growth kinetics of grain boundary ferrite allotriomorphs in Fe–C–X alloys. Metall Trans A 12:1729–1741 Bradley JR, Aaronson HI (1981) Growth kinetics of grain boundary ferrite allotriomorphs in Fe–C–X alloys. Metall Trans A 12:1729–1741
17.
go back to reference Gilmour JB, Purdy GR, Kirkaldy JS (1972) Partion of manganese during proeutectoid ferrite transformation in steel. Metall Trans A 3:3213–3222 Gilmour JB, Purdy GR, Kirkaldy JS (1972) Partion of manganese during proeutectoid ferrite transformation in steel. Metall Trans A 3:3213–3222
18.
go back to reference Khalaj G, Yoozbashizadeh H, Khodabandeh A, Nazari A (2011) Artificial neural network to predict the effect of heat treatments on Vickers microhardness of low- carbon Nb microalloyed steels. Neural Comput Appl. doi:10.1007/s00521-011-0779-z Khalaj G, Yoozbashizadeh H, Khodabandeh A, Nazari A (2011) Artificial neural network to predict the effect of heat treatments on Vickers microhardness of low- carbon Nb microalloyed steels. Neural Comput Appl. doi:10.​1007/​s00521-011-0779-z
19.
go back to reference Perlovsky LI (2001) Neural networks and intellect. Oxford University Press, Oxford Perlovsky LI (2001) Neural networks and intellect. Oxford University Press, Oxford
20.
go back to reference Guzelbey IH, Cevik A, Gögüs MT (2006) Prediction of rotation capacity of wide flange beams using neural networks. J Constr Steel Res 62:950–961CrossRef Guzelbey IH, Cevik A, Gögüs MT (2006) Prediction of rotation capacity of wide flange beams using neural networks. J Constr Steel Res 62:950–961CrossRef
21.
go back to reference Cevik A, Guzelbey IH (2008) Neural network modeling of strength enhancement for Cfrp confined concrete cylinders. Build Environ 43:751–763CrossRef Cevik A, Guzelbey IH (2008) Neural network modeling of strength enhancement for Cfrp confined concrete cylinders. Build Environ 43:751–763CrossRef
22.
go back to reference Cevik A, Guzelbey IH (2007) A soft computing based approach for the prediction of ultimate strength of metal plates in compression. Eng Struct 29(3):383–394CrossRef Cevik A, Guzelbey IH (2007) A soft computing based approach for the prediction of ultimate strength of metal plates in compression. Eng Struct 29(3):383–394CrossRef
23.
go back to reference Guzelbey IH, Cevik A, Erklig A (2006) Prediction of web crippling strength of cold-formed steel sheetings using neural networks. J Constr Steel Res 62:962–973CrossRef Guzelbey IH, Cevik A, Erklig A (2006) Prediction of web crippling strength of cold-formed steel sheetings using neural networks. J Constr Steel Res 62:962–973CrossRef
24.
go back to reference A. Nazari, A. Sedghi, N. Didehvar (2011) Modeling impact resistance of aluminum-epoxy laminated composites by artificial neural networks. J Compos Mater. doi:10.1177/0021998311421222 A. Nazari, A. Sedghi, N. Didehvar (2011) Modeling impact resistance of aluminum-epoxy laminated composites by artificial neural networks. J Compos Mater. doi:10.​1177/​0021998311421222​
25.
go back to reference Nazari A, Riahi S (2011) Artificial neural networks to prediction total specific pore volume of geopolymers produced from waste ashes. Neural Comput Appl. doi:10.1007/s00521-011-0760-x Nazari A, Riahi S (2011) Artificial neural networks to prediction total specific pore volume of geopolymers produced from waste ashes. Neural Comput Appl. doi:10.​1007/​s00521-011-0760-x
26.
go back to reference Nazari A (2011) Application of artificial neural networks for analytical modeling of Charpy impact energy of functionally graded steels. Neural Comput Appl. doi:10.1007/s00521-011-0761-9 Nazari A (2011) Application of artificial neural networks for analytical modeling of Charpy impact energy of functionally graded steels. Neural Comput Appl. doi:10.​1007/​s00521-011-0761-9
28.
go back to reference Nazari A, Riahi S (2011) Prediction split tensile strength and water permeability of high strength concrete containing TiO2 nanoparticles by artificial neural network and genetic programming. Compos Part B Eng 42:473–488CrossRef Nazari A, Riahi S (2011) Prediction split tensile strength and water permeability of high strength concrete containing TiO2 nanoparticles by artificial neural network and genetic programming. Compos Part B Eng 42:473–488CrossRef
30.
go back to reference Nazari A, Riahi S (2011) Computer-aided design of the effects of Fe2O3 nanoparticles on split tensile strength and water permeability of high strength concrete. Mater Des 32:3966–3979CrossRef Nazari A, Riahi S (2011) Computer-aided design of the effects of Fe2O3 nanoparticles on split tensile strength and water permeability of high strength concrete. Mater Des 32:3966–3979CrossRef
31.
go back to reference Col M, Ertunc HM, Yılmaz M (2007) An artificial neural network model for toughness properties in microalloyed steel in consideration of industrial production conditions. Mater Des 28:488–495CrossRef Col M, Ertunc HM, Yılmaz M (2007) An artificial neural network model for toughness properties in microalloyed steel in consideration of industrial production conditions. Mater Des 28:488–495CrossRef
32.
go back to reference Nazari A, Milani AA, Zakeri M (2011) Modeling ductile to brittle transition temperature of functionally graded steels by artificial neural networks. Comput Mater Sci 50:2028–2037CrossRef Nazari A, Milani AA, Zakeri M (2011) Modeling ductile to brittle transition temperature of functionally graded steels by artificial neural networks. Comput Mater Sci 50:2028–2037CrossRef
33.
go back to reference Tafteh R (2011) Austenite decomposition in an X80 linepipe steel. Master’s thesis, The University of British Columbia Tafteh R (2011) Austenite decomposition in an X80 linepipe steel. Master’s thesis, The University of British Columbia
34.
go back to reference Gerami S (2010) Characterization and microstructural evolution model of a Nb complex phase steel. Master’s thesis, The University of British Columbia Gerami S (2010) Characterization and microstructural evolution model of a Nb complex phase steel. Master’s thesis, The University of British Columbia
35.
go back to reference Lottey KK (2002) Austenite decomposition of a HSLA-Nb,Ti steel and an A1-TRIP steel during continuous cooling. Master’s thesis, The University of British Columbia Lottey KK (2002) Austenite decomposition of a HSLA-Nb,Ti steel and an A1-TRIP steel during continuous cooling. Master’s thesis, The University of British Columbia
36.
go back to reference Olasolo M, Uranga P, Rodriguez-Ibabe JM, Lo′pez B (2011) Effect of austenite microstructure and cooling rate on transformation characteristics in a low carbon Nb–V microalloyed steel. Mater Sci Eng, A 528:2559–2569CrossRef Olasolo M, Uranga P, Rodriguez-Ibabe JM, Lo′pez B (2011) Effect of austenite microstructure and cooling rate on transformation characteristics in a low carbon Nb–V microalloyed steel. Mater Sci Eng, A 528:2559–2569CrossRef
37.
go back to reference Xu L, Xing J, Wei S, Zhang Y, Long R (2006) Artificial neural network prediction of retained austenite content and impact toughness of high-vanadium high speed steel (HVHSS). Mater Sci Eng, A 433:251–256CrossRef Xu L, Xing J, Wei S, Zhang Y, Long R (2006) Artificial neural network prediction of retained austenite content and impact toughness of high-vanadium high speed steel (HVHSS). Mater Sci Eng, A 433:251–256CrossRef
38.
go back to reference Xu L, Xing J, Wei S, Zhang Y, Long R (2007) Optimization of heat treatment technique of high-vanadium high-speed steel based on back-propagation neural networks. Mater Des 28:1425–1432CrossRef Xu L, Xing J, Wei S, Zhang Y, Long R (2007) Optimization of heat treatment technique of high-vanadium high-speed steel based on back-propagation neural networks. Mater Des 28:1425–1432CrossRef
39.
go back to reference Bahrami A, Mousavi Anijdan SH, Ekrami A (2005) Prediction of mechanical properties of DP steels using neural network model. J Alloys Compd 392:177–182CrossRef Bahrami A, Mousavi Anijdan SH, Ekrami A (2005) Prediction of mechanical properties of DP steels using neural network model. J Alloys Compd 392:177–182CrossRef
40.
go back to reference Enomoto M, Aaronson H (1986) Nucleation kinetics of proeutectoid ferrite at austenite grain boundaries in Fe–C–X alloys. Metall Trans A 17 A(8):1385–1397CrossRef Enomoto M, Aaronson H (1986) Nucleation kinetics of proeutectoid ferrite at austenite grain boundaries in Fe–C–X alloys. Metall Trans A 17 A(8):1385–1397CrossRef
41.
go back to reference Enomoto M, Lange WF, Aaronson HI (1986) Kinetics of ferrite nucleation at austenite grain edges in Fe–C and Fe–C–X alloys. Metall Trans A 17 A(8):1399–1407CrossRef Enomoto M, Lange WF, Aaronson HI (1986) Kinetics of ferrite nucleation at austenite grain edges in Fe–C and Fe–C–X alloys. Metall Trans A 17 A(8):1399–1407CrossRef
42.
go back to reference Umemoto M, Guo ZH, Tamura I (1987) Effect of cooling rate on grain size of ferrite in a carbon steel. Mater Sci Technol 3(4):249–255CrossRef Umemoto M, Guo ZH, Tamura I (1987) Effect of cooling rate on grain size of ferrite in a carbon steel. Mater Sci Technol 3(4):249–255CrossRef
43.
go back to reference Siwecki T, Zajac S (1991) Recrystallization controlled rolling and accelerated cooling of Ti–V–(Nb)–N microalloyed steels. In: 32nd mechanical working and steel processing conference proceedings, October 1990, Cincinnati, OH, USA. Published by Iron & Steel Soc of AIME. Compendex, pp 441–451 Siwecki T, Zajac S (1991) Recrystallization controlled rolling and accelerated cooling of Ti–V–(Nb)–N microalloyed steels. In: 32nd mechanical working and steel processing conference proceedings, October 1990, Cincinnati, OH, USA. Published by Iron & Steel Soc of AIME. Compendex, pp 441–451
44.
go back to reference Topcu IB, Sarıdemir M (2008) Prediction of compressive strength of concrete containing fly ash using artificial neural network and fuzzy logic. Comput Mater Sci 41(3):305–311CrossRef Topcu IB, Sarıdemir M (2008) Prediction of compressive strength of concrete containing fly ash using artificial neural network and fuzzy logic. Comput Mater Sci 41(3):305–311CrossRef
Metadata
Title
ANN-based prediction of ferrite fraction in continuous cooling of microalloyed steels
Authors
Gholamreza Khalaj
Mahdi Khoeini
Meysam Khakian-Qomi
Publication date
01-09-2013
Publisher
Springer London
Published in
Neural Computing and Applications / Issue 3-4/2013
Print ISSN: 0941-0643
Electronic ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-012-0992-4

Other articles of this Issue 3-4/2013

Neural Computing and Applications 3-4/2013 Go to the issue

Premium Partner