Skip to main content
Top

2020 | OriginalPaper | Chapter

Ant-based Neural Topology Search (ANTS) for Optimizing Recurrent Networks

Authors : AbdElRahman ElSaid, Alexander G. Ororbia, Travis J. Desell

Published in: Applications of Evolutionary Computation

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Hand-crafting effective and efficient structures for recurrent neural networks (RNNs) is a difficult, expensive, and time-consuming process. To address this challenge, we propose a novel neuro-evolution algorithm based on ant colony optimization (ACO), called Ant-based Neural Topology Search (ANTS), for directly optimizing RNN topologies. The procedure selects from multiple modern recurrent cell types such as \(\varDelta \)-RNN, GRU, LSTM, MGU and UGRNN cells, as well as recurrent connections which may span multiple layers and/or steps of time. In order to introduce an inductive bias that encourages the formation of sparser synaptic connectivity patterns, we investigate several variations of the core algorithm. We do so primarily by formulating different functions that drive the underlying pheromone simulation process (which mimic L1 and L2 regularization in standard machine learning) as well as by introducing ant agents with specialized roles (inspired by how real ant colonies operate), i.e., explorer ants that construct the initial feed forward structure and social ants which select nodes from the feed forward connections to subsequently craft recurrent memory structures. We also incorporate communal intelligence, where best weights are shared by the ant colony for weight initialization, reducing the number of backpropagation epochs required to locally train candidate RNNs, speeding up the neuro-evolution process. Our results demonstrate that the sparser RNNs evolved by ANTS significantly outperform traditional one and two layer architectures consisting of modern memory cells, as well as the well-known NEAT algorithm. Furthermore, we improve upon prior state-of-the-art results on the time series dataset utilized in our experiments.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
2
Note that this superstructure is more connected than a standard fully connected neural network – each layer is also fully connected to each other layer as well, allowing for forward and backward layer skipping connections, with additional recurrent connections between node pairs for each time skip allowed.
 
3
Corraborating prior studies that have also shown the benefits of similar initialization schemes [3, 20].
 
Literature
1.
go back to reference Yang, X.S.: Nature-Inspired Metaheuristic Algorithms. Luniver Press, Frome (2010) Yang, X.S.: Nature-Inspired Metaheuristic Algorithms. Luniver Press, Frome (2010)
2.
go back to reference Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting topologies. Evol. Comput. 10(2), 99–127 (2002)CrossRef Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting topologies. Evol. Comput. 10(2), 99–127 (2002)CrossRef
4.
go back to reference Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)MathSciNetMATH Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)MathSciNetMATH
5.
go back to reference Stanley, K.O., D’Ambrosio, D.B., Gauci, J.: A hypercube-based encoding for evolving large-scale neural networks. Artif. Life 15(2), 185–212 (2009)CrossRef Stanley, K.O., D’Ambrosio, D.B., Gauci, J.: A hypercube-based encoding for evolving large-scale neural networks. Artif. Life 15(2), 185–212 (2009)CrossRef
6.
go back to reference Yao, X., Liu, Y.: A new evolutionary system for evolving artificial neural networks. IEEE Trans. Neural Netw. 8(3), 694–713 (1997)CrossRef Yao, X., Liu, Y.: A new evolutionary system for evolving artificial neural networks. IEEE Trans. Neural Netw. 8(3), 694–713 (1997)CrossRef
7.
go back to reference Kassahun, Y., Sommer, G.: Efficient reinforcement learning through evolutionary acquisition of neural topologies. In: ESANN, pp. 259–266. Citeseer (2005) Kassahun, Y., Sommer, G.: Efficient reinforcement learning through evolutionary acquisition of neural topologies. In: ESANN, pp. 259–266. Citeseer (2005)
8.
go back to reference Xie, L., Yuille, A.: Genetic CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1379–1388 (2017) Xie, L., Yuille, A.: Genetic CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1379–1388 (2017)
9.
go back to reference Miikkulainen, R., et al.: Evolving deep neural networks. In: Artificial Intelligence in the Age of Neural Networks and Brain Computing, pp. 293–312. Elsevier (2019) Miikkulainen, R., et al.: Evolving deep neural networks. In: Artificial Intelligence in the Age of Neural Networks and Brain Computing, pp. 293–312. Elsevier (2019)
10.
go back to reference Desell, T.: Large scale evolution of convolutional neural networks using volunteer computing. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, pp. 127–128. ACM (2017) Desell, T.: Large scale evolution of convolutional neural networks using volunteer computing. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, pp. 127–128. ACM (2017)
11.
12.
go back to reference Holland, J.H., et al.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. MIT Press, Cambridge (1992)CrossRef Holland, J.H., et al.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. MIT Press, Cambridge (1992)CrossRef
13.
go back to reference Dorigo, M.: Optimization, learning and natural algorithms. Ph.D. thesis, Politecnico di Milano (1992) Dorigo, M.: Optimization, learning and natural algorithms. Ph.D. thesis, Politecnico di Milano (1992)
14.
go back to reference Mavrovouniotis, M., Yang, S.: Evolving neural networks using ant colony optimization with pheromone trail limits. In: 2013 13th UK Workshop on Computational Intelligence (UKCI), pp. 16–23. IEEE (2013) Mavrovouniotis, M., Yang, S.: Evolving neural networks using ant colony optimization with pheromone trail limits. In: 2013 13th UK Workshop on Computational Intelligence (UKCI), pp. 16–23. IEEE (2013)
15.
go back to reference Sivagaminathan, R.K., Ramakrishnan, S.: A hybrid approach for feature subset selection using neural networks and ant colony optimization. Expert Syst. Appl. 33(1), 49–60 (2007)CrossRef Sivagaminathan, R.K., Ramakrishnan, S.: A hybrid approach for feature subset selection using neural networks and ant colony optimization. Expert Syst. Appl. 33(1), 49–60 (2007)CrossRef
17.
18.
go back to reference ElSaid, A., El Jamiy, F., Higgins, J., Wild, B., Desell, T.: Optimizing long short-term memory recurrent neural networks using ant colony optimization to predict turbine engine vibration. Appl. Soft Comput. 73, 969–991 (2018)CrossRef ElSaid, A., El Jamiy, F., Higgins, J., Wild, B., Desell, T.: Optimizing long short-term memory recurrent neural networks using ant colony optimization to predict turbine engine vibration. Appl. Soft Comput. 73, 969–991 (2018)CrossRef
19.
go back to reference O’Donnell, S., Bulova, S., Barrett, M., von Beeren, C.: Brain investment under colony-level selection: soldier specialization in eciton army ants (formicidae: Dorylinae). BMC Zool. 3(1), 3 (2018)CrossRef O’Donnell, S., Bulova, S., Barrett, M., von Beeren, C.: Brain investment under colony-level selection: soldier specialization in eciton army ants (formicidae: Dorylinae). BMC Zool. 3(1), 3 (2018)CrossRef
20.
go back to reference Desell, T.: Accelerating the evolution of convolutional neural networks with node-level mutations and epigenetic weight initialization. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, pp. 157–158. ACM (2018) Desell, T.: Accelerating the evolution of convolutional neural networks with node-level mutations and epigenetic weight initialization. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, pp. 157–158. ACM (2018)
21.
go back to reference Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)CrossRef Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)CrossRef
22.
go back to reference Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555 (2014) Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:​1412.​3555 (2014)
24.
go back to reference Collins, J., Sohl-Dickstein, J., Sussillo, D.: Capacity and trainability in recurrent neural networks. arXiv preprint arXiv:1611.09913 (2016) Collins, J., Sohl-Dickstein, J., Sussillo, D.: Capacity and trainability in recurrent neural networks. arXiv preprint arXiv:​1611.​09913 (2016)
25.
go back to reference Ororbia II, A.G., Mikolov, T., Reitter, D.: Learning simpler language models with the differential state framework. Neural Comput. 29(12), 3327–3352 (2017)MathSciNetCrossRef Ororbia II, A.G., Mikolov, T., Reitter, D.: Learning simpler language models with the differential state framework. Neural Comput. 29(12), 3327–3352 (2017)MathSciNetCrossRef
26.
go back to reference Liu, Y.-P., Wu, M.-G., Qian, J.-X.: Evolving neural networks using the hybrid of ant colony optimization and BP algorithms. In: Wang, J., Yi, Z., Zurada, J.M., Lu, B.-L., Yin, H. (eds.) ISNN 2006. LNCS, vol. 3971, pp. 714–722. Springer, Heidelberg (2006). https://doi.org/10.1007/11759966_105CrossRef Liu, Y.-P., Wu, M.-G., Qian, J.-X.: Evolving neural networks using the hybrid of ant colony optimization and BP algorithms. In: Wang, J., Yi, Z., Zurada, J.M., Lu, B.-L., Yin, H. (eds.) ISNN 2006. LNCS, vol. 3971, pp. 714–722. Springer, Heidelberg (2006). https://​doi.​org/​10.​1007/​11759966_​105CrossRef
27.
go back to reference Ororbia, A., Elsaid, A.A., Desell, T.: Investigating recurrent neural network memory structures using neuro-evolution (2019) Ororbia, A., Elsaid, A.A., Desell, T.: Investigating recurrent neural network memory structures using neuro-evolution (2019)
28.
go back to reference Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013)
29.
go back to reference Jozefowicz, R., Zaremba, W., Sutskever, I.: An empirical exploration of recurrent network architectures. In: International Conference on Machine Learning, pp. 2342–2350 (2015) Jozefowicz, R., Zaremba, W., Sutskever, I.: An empirical exploration of recurrent network architectures. In: International Conference on Machine Learning, pp. 2342–2350 (2015)
30.
go back to reference Mikolov, T., Karafiát, M., Burget, L., Černockỳ, J., Khudanpur, S.: Recurrent neural network based language model. In: Eleventh Annual Conference of the International Speech Communication Association (2010) Mikolov, T., Karafiát, M., Burget, L., Černockỳ, J., Khudanpur, S.: Recurrent neural network based language model. In: Eleventh Annual Conference of the International Speech Communication Association (2010)
Metadata
Title
Ant-based Neural Topology Search (ANTS) for Optimizing Recurrent Networks
Authors
AbdElRahman ElSaid
Alexander G. Ororbia
Travis J. Desell
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-43722-0_40

Premium Partner