Skip to main content
Top
Published in: Rare Metals 2/2022

20-06-2021 | Original Article

Antibacterial mechanism of Cu-bearing 430 ferritic stainless steel

Authors: Zhuang Zhang, Xin-Rui Zhang, Tao Jin , Chun-Guang Yang, Yu-Peng Sun, Qi Li, Ke Yang

Published in: Rare Metals | Issue 2/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Copper (Cu)-bearing stainless steel has testified its effectiveness to reduce the risk of bacterial infections. However, its antibacterial mechanism is still controversial. Therefore, three 430 ferritic stainless steels with different Cu contents are selected to conduct deeper research by the way of bacterial inactivation from two aspects of material and biology. Hereinto, electrochemical and antibacterial results show that the increase in Cu content simultaneously improves the corrosion resistance and antibacterial property of 430 stainless steel. In addition, it is found that Escherichia coli (E. coli) on the surface 430 Cu-bearing stainless steel by the dry method of inoculation possesses a rapid inactivation ability. X-ray photoelectron spectroscopy (XPS) aids with ion chelation experiments prove that Cu (I) plays a more crucial role in the contact-killing efficiency than Cu (II), resulting from more production of reactive oxygen species (ROS).

Graphical abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
[1]
go back to reference Liu W, Guan W, Zhong N. Strategies and advances in combating COVID-19 in China. Engineering. 2020;6(10):1076.CrossRef Liu W, Guan W, Zhong N. Strategies and advances in combating COVID-19 in China. Engineering. 2020;6(10):1076.CrossRef
[2]
go back to reference Peiris J, Jong D, Guan Y. Avian influenza virus (H5N1): a threat to human health. Clin Microbiol Rev. 2007;40(2):243.CrossRef Peiris J, Jong D, Guan Y. Avian influenza virus (H5N1): a threat to human health. Clin Microbiol Rev. 2007;40(2):243.CrossRef
[3]
go back to reference Fleckenstein J, Kuhlmann F. Enterotoxigenic Escherichia coli Infections. Curr Infect Dis Rep. 2019; 21(3):9. Fleckenstein J, Kuhlmann F. Enterotoxigenic Escherichia coli Infections. Curr Infect Dis Rep. 2019; 21(3):9.
[4]
go back to reference Pitout J. Extraintestinal pathogenic Escherichia coli: a combination of virulence with antibiotic resistance. Front Microbiol. 2012;3(9):9. Pitout J. Extraintestinal pathogenic Escherichia coli: a combination of virulence with antibiotic resistance. Front Microbiol. 2012;3(9):9.
[5]
go back to reference Poirel L, Madec J, Lupo A, Schink A, Kieffer N, Nordmann P, Schwarz S. Antimicrobial Resistance in Escherichia coli. Microbiol Spectr. 2018;6(4):289.CrossRef Poirel L, Madec J, Lupo A, Schink A, Kieffer N, Nordmann P, Schwarz S. Antimicrobial Resistance in Escherichia coli. Microbiol Spectr. 2018;6(4):289.CrossRef
[6]
go back to reference Festa R, Thiele D. Copper: an essential metal in biology. Curr Biol. 2011;21(21):R877.CrossRef Festa R, Thiele D. Copper: an essential metal in biology. Curr Biol. 2011;21(21):R877.CrossRef
[7]
go back to reference Banci L, Bertini I, Cantini F, Ciofi-Baffoni S. Cellular copper distribution: a mechanistic systems biology approach. Cell Mol Life Sci. 2010;67:2563.CrossRef Banci L, Bertini I, Cantini F, Ciofi-Baffoni S. Cellular copper distribution: a mechanistic systems biology approach. Cell Mol Life Sci. 2010;67:2563.CrossRef
[8]
go back to reference Hans M, Mathews S, Mucklich F, Solioz M. Physicochemical properties of copper important for its antibacterial activity and development of a unified model. Biointerphases. 2016;11(1):018902.CrossRef Hans M, Mathews S, Mucklich F, Solioz M. Physicochemical properties of copper important for its antibacterial activity and development of a unified model. Biointerphases. 2016;11(1):018902.CrossRef
[9]
go back to reference Zhang E, Fu S, Wang R, Wang R, Li H, Liu Y, Ma Z, Liu G, Zhu C, Qin G. Role of Cu element in biomedical metal alloy design. Rare Met. 2019;38:476.CrossRef Zhang E, Fu S, Wang R, Wang R, Li H, Liu Y, Ma Z, Liu G, Zhu C, Qin G. Role of Cu element in biomedical metal alloy design. Rare Met. 2019;38:476.CrossRef
[10]
go back to reference Nan L, Yang K. Cu Ions Dissolution from Cu-bearing antibacterial stainless steel. J Mater Sci Technol. 2010;26(10):941.CrossRef Nan L, Yang K. Cu Ions Dissolution from Cu-bearing antibacterial stainless steel. J Mater Sci Technol. 2010;26(10):941.CrossRef
[11]
go back to reference Zhan Z, Li X, Cao Y. Design and properties of new Fe-Cu composites. Chin J Rare Met. 2020;44(2):153. Zhan Z, Li X, Cao Y. Design and properties of new Fe-Cu composites. Chin J Rare Met. 2020;44(2):153.
[12]
go back to reference Hastuty S, Nishikata A, Tsuru T. Pitting corrosion of Type 430 stainless steel under chloride solution droplet. Corrosion Sci. 2010;52(6):2035.CrossRef Hastuty S, Nishikata A, Tsuru T. Pitting corrosion of Type 430 stainless steel under chloride solution droplet. Corrosion Sci. 2010;52(6):2035.CrossRef
[13]
go back to reference Podder AS, Bhanja A. Applications of stainless steel in automobile industry. Adv Mat Res. 2013;794:731. Podder AS, Bhanja A. Applications of stainless steel in automobile industry. Adv Mat Res. 2013;794:731.
[14]
go back to reference Wang H, Xiao Z, June Q, Yang H, Cao Z, Guo X. A comparison study on corrosion resistance of 430 stainless steel surfaces modified by alkylsilane and fluoroalkylsilane SAMs. Iron Steel Res Int. 2013;20(12):75.CrossRef Wang H, Xiao Z, June Q, Yang H, Cao Z, Guo X. A comparison study on corrosion resistance of 430 stainless steel surfaces modified by alkylsilane and fluoroalkylsilane SAMs. Iron Steel Res Int. 2013;20(12):75.CrossRef
[15]
go back to reference Cashell KA, Baddoo NR. Ferritic stainless steels in structural applications. Thin-walled Struct. 2014;83:169.CrossRef Cashell KA, Baddoo NR. Ferritic stainless steels in structural applications. Thin-walled Struct. 2014;83:169.CrossRef
[16]
go back to reference Zhao J, Zhai Z, Sun D, Yang C, Zhang X, Huang N, Jiang X, Yang K. Antibacterial durability and biocompatibility of antibacterial-passivated 316L stainless steel in simulated physiological environment. Mater Sci Eng C. 2019;100:396.CrossRef Zhao J, Zhai Z, Sun D, Yang C, Zhang X, Huang N, Jiang X, Yang K. Antibacterial durability and biocompatibility of antibacterial-passivated 316L stainless steel in simulated physiological environment. Mater Sci Eng C. 2019;100:396.CrossRef
[17]
go back to reference Ni H, Zhang H, Chen R, Zhan W, Huo K, Zuo Z. Antibacterial properties and corrosion resistance of AISI 420 stainless steels implanted by silver and copper ions. Int J Miner Metall Mater. 2012;19(4):322.CrossRef Ni H, Zhang H, Chen R, Zhan W, Huo K, Zuo Z. Antibacterial properties and corrosion resistance of AISI 420 stainless steels implanted by silver and copper ions. Int J Miner Metall Mater. 2012;19(4):322.CrossRef
[18]
go back to reference Zhang X, Huang X, Yong M, Lin N, Fan A, Tang B. Bactericidal behavior of Cu-containing stainless steel surfaces. Appl Surf Sci. 2012;258(24):10058.CrossRef Zhang X, Huang X, Yong M, Lin N, Fan A, Tang B. Bactericidal behavior of Cu-containing stainless steel surfaces. Appl Surf Sci. 2012;258(24):10058.CrossRef
[19]
go back to reference Zhang X, Yang C, Yang K. Contact killing of Cu-bearing stainless steel based on charge transfer caused by the microdomain potential difference. ACS Appl Mater Interfaces. 2020;12(1):361.CrossRef Zhang X, Yang C, Yang K. Contact killing of Cu-bearing stainless steel based on charge transfer caused by the microdomain potential difference. ACS Appl Mater Interfaces. 2020;12(1):361.CrossRef
[20]
go back to reference Sun S, Zhao A, Zeng Q, Yin H. Effect of continuous annealing temperature on microstructure and properties of ultra-purified ferritic stainless steel. Steel Res Int. 2017;88(7):1600347.CrossRef Sun S, Zhao A, Zeng Q, Yin H. Effect of continuous annealing temperature on microstructure and properties of ultra-purified ferritic stainless steel. Steel Res Int. 2017;88(7):1600347.CrossRef
[21]
go back to reference Bartram J, Cotruvo J, Exner M, Fricker C, Glasmacher A. Heterotrophic plate count measurement in drinking water safety management: report of an Expert Meeting Geneva, 24–25 April 2002. Int J Food Microbiol. 2004;92(3):241.CrossRef Bartram J, Cotruvo J, Exner M, Fricker C, Glasmacher A. Heterotrophic plate count measurement in drinking water safety management: report of an Expert Meeting Geneva, 24–25 April 2002. Int J Food Microbiol. 2004;92(3):241.CrossRef
[22]
go back to reference Nan L, Xu D, Gu T, Song X, Yang K. Microbiological influenced corrosion resistance characteristics of a 304L-Cu stainless steel against Escherichia coli. Mater Sci Eng C. 2015;48:228.CrossRef Nan L, Xu D, Gu T, Song X, Yang K. Microbiological influenced corrosion resistance characteristics of a 304L-Cu stainless steel against Escherichia coli. Mater Sci Eng C. 2015;48:228.CrossRef
[23]
go back to reference Sun Y, Yang C, Yang C, Xu D, Li Q, Yin L, Qiu C, Liu D, Yang K. Stern-Geary constant for X80 pipeline steel in the presence of different corrosive microorganisms, Acta Metall. Sin-Engl Lett. 2019;32(12):1483. Sun Y, Yang C, Yang C, Xu D, Li Q, Yin L, Qiu C, Liu D, Yang K. Stern-Geary constant for X80 pipeline steel in the presence of different corrosive microorganisms, Acta Metall. Sin-Engl Lett. 2019;32(12):1483.
[24]
go back to reference Li M, Nan L, Xu D, Ren G, Yang K. Antibacterial performance of a Cu-bearing stainless steel against microorganisms in tap water. J Mater Sci Technol. 2015;31(3):243.CrossRef Li M, Nan L, Xu D, Ren G, Yang K. Antibacterial performance of a Cu-bearing stainless steel against microorganisms in tap water. J Mater Sci Technol. 2015;31(3):243.CrossRef
[25]
go back to reference Laggner H, Hermann M, Gmeiner B, Kapiotics S. Cu2+ and Cu+ bathocuproine disulfonate complexes promote the oxidation of the ROS-detecting compound dichlorofluorescin (DCFH). Anal Bioanal Chem. 2006;385(5):959.CrossRef Laggner H, Hermann M, Gmeiner B, Kapiotics S. Cu2+ and Cu+ bathocuproine disulfonate complexes promote the oxidation of the ROS-detecting compound dichlorofluorescin (DCFH). Anal Bioanal Chem. 2006;385(5):959.CrossRef
[26]
go back to reference Hicks J, Halkerston R, Silman N, Jackson K, Aylott W. Real-time bacterial detection with an intracellular ROS sensing platform. Biosens Bioelectron. 2019;141:111430.CrossRef Hicks J, Halkerston R, Silman N, Jackson K, Aylott W. Real-time bacterial detection with an intracellular ROS sensing platform. Biosens Bioelectron. 2019;141:111430.CrossRef
[27]
go back to reference Xin S, Li M. Electrochemical corrosion characteristics of type 316L stainless steel in hot concentrated seawater. Corrosion Sci. 2014;81:96.CrossRef Xin S, Li M. Electrochemical corrosion characteristics of type 316L stainless steel in hot concentrated seawater. Corrosion Sci. 2014;81:96.CrossRef
[28]
go back to reference Geng P, Zhao J, Xi T, Yang C, Yang K. Stability of passive film and antibacterial durability of Cu-bearing L605 alloy in simulated physiological solutions. Rare Met. 2020;39(1):1. Geng P, Zhao J, Xi T, Yang C, Yang K. Stability of passive film and antibacterial durability of Cu-bearing L605 alloy in simulated physiological solutions. Rare Met. 2020;39(1):1.
[29]
go back to reference Oguzie E, Li J, Liu Y, Chen D, Liu Y, Yang K, Wang F. The effect of Cu addition on the electrochemical corrosion and passivation behavior of stainless steels. Electrochim Acta. 2010;55(17):5028.CrossRef Oguzie E, Li J, Liu Y, Chen D, Liu Y, Yang K, Wang F. The effect of Cu addition on the electrochemical corrosion and passivation behavior of stainless steels. Electrochim Acta. 2010;55(17):5028.CrossRef
[30]
go back to reference Liu X, Liu L, Sui F, Bi H, Chang E, Li M. Influence of Cu on the microstructure and corrosion resistance of cold-rolled type 204 stainless steels. J Solid State Electrochem. 2020;24(1):1197.CrossRef Liu X, Liu L, Sui F, Bi H, Chang E, Li M. Influence of Cu on the microstructure and corrosion resistance of cold-rolled type 204 stainless steels. J Solid State Electrochem. 2020;24(1):1197.CrossRef
[31]
go back to reference Zhou E, Li H, Yang C, Wang J, Xu D, Zhang D, Gu T. Accelerated corrosion of 2304 duplex stainless steel by marine Pseudomonas aeruginosa biofilm. Int Biodeterior Biodegrad. 2018;127:1.CrossRef Zhou E, Li H, Yang C, Wang J, Xu D, Zhang D, Gu T. Accelerated corrosion of 2304 duplex stainless steel by marine Pseudomonas aeruginosa biofilm. Int Biodeterior Biodegrad. 2018;127:1.CrossRef
[32]
go back to reference Li P, Zhao Y, Liu Y, Zhao Y, Xu D, Yang C, Zhang T, Gu T, Yang K. Effect of Cu addition to 2205 duplex stainless steel on the resistance against pitting corrosion by the Pseudomonas aeruginosa Biofilm. J Mater Sci Technol. 2017;33(7):723.CrossRef Li P, Zhao Y, Liu Y, Zhao Y, Xu D, Yang C, Zhang T, Gu T, Yang K. Effect of Cu addition to 2205 duplex stainless steel on the resistance against pitting corrosion by the Pseudomonas aeruginosa Biofilm. J Mater Sci Technol. 2017;33(7):723.CrossRef
[33]
go back to reference Rao V, Singhal L. Corrosion behavior of Cr–Mn–Ni stainless steel in acetic acid solution. Corrosion. 2010;66(8):292.CrossRef Rao V, Singhal L. Corrosion behavior of Cr–Mn–Ni stainless steel in acetic acid solution. Corrosion. 2010;66(8):292.CrossRef
[34]
go back to reference Rondelli G, Torricelli P, Fini M, Giardino R. In vitro corrosion study by EIS of a nickel-free stainless steel for orthopaedic applications. Biomaterials. 2004;26(7):739.CrossRef Rondelli G, Torricelli P, Fini M, Giardino R. In vitro corrosion study by EIS of a nickel-free stainless steel for orthopaedic applications. Biomaterials. 2004;26(7):739.CrossRef
[35]
go back to reference Mathews S, Kumar R, Solioz M. Copper reduction and contact killing of bacteria by iron surfaces. Appl Environ Microbiol. 2015;81(18):6399.CrossRef Mathews S, Kumar R, Solioz M. Copper reduction and contact killing of bacteria by iron surfaces. Appl Environ Microbiol. 2015;81(18):6399.CrossRef
[36]
go back to reference Mathews S, Hans M, Mucklich F, Solioz M. Contact killing of bacteria on copper is suppressed if bacterial-metal contact is prevented and is induced on iron by copper ions. Appl Environ Microbiol. 2013;79(8):2605.CrossRef Mathews S, Hans M, Mucklich F, Solioz M. Contact killing of bacteria on copper is suppressed if bacterial-metal contact is prevented and is induced on iron by copper ions. Appl Environ Microbiol. 2013;79(8):2605.CrossRef
[37]
go back to reference Santo C, Lam E, Elowsky C, Quaranta G. Bacterial killing by dry metallic copper surfaces. Appl Environ Microbiol. 2011;77(3):794.CrossRef Santo C, Lam E, Elowsky C, Quaranta G. Bacterial killing by dry metallic copper surfaces. Appl Environ Microbiol. 2011;77(3):794.CrossRef
[38]
go back to reference Santo C, Taudte N, Nies D, Grass G. Contribution of copper ion resistance to survival of Escherichia coli on metallic copper surfaces. Appl Environ Microbiol. 2008;74(4):977.CrossRef Santo C, Taudte N, Nies D, Grass G. Contribution of copper ion resistance to survival of Escherichia coli on metallic copper surfaces. Appl Environ Microbiol. 2008;74(4):977.CrossRef
[39]
go back to reference Dubravka M, Ruzica A, Branka V, D K, Jelena P, Sara S. Scanning electron microscopy of Listeria monocytogenes biofilms on stainless steel surfaces. Acta Vet beograd. 2009; 59(4):423. Dubravka M, Ruzica A, Branka V, D K, Jelena P, Sara S. Scanning electron microscopy of Listeria monocytogenes biofilms on stainless steel surfaces. Acta Vet beograd. 2009; 59(4):423.
[40]
go back to reference Liu R, Memarzadeh K, Chang B, Zhang Y, Ma Z, Allaker R, Ren L, Yang K. Antibacterial effect of copper-bearing titanium alloy (Ti-Cu) against Streptococcus mutans and Porphyromonas gingivalis. Sci Rep. 2016;6(1):29985.CrossRef Liu R, Memarzadeh K, Chang B, Zhang Y, Ma Z, Allaker R, Ren L, Yang K. Antibacterial effect of copper-bearing titanium alloy (Ti-Cu) against Streptococcus mutans and Porphyromonas gingivalis. Sci Rep. 2016;6(1):29985.CrossRef
[41]
go back to reference Ghodselahi T, Vesaghi M, Shafiekhani A, Baghizadeh A, Lameii M. XPS study of the Cu@Cu2O core-shell nanoparticles. Appl Surf Sci. 2008;255(5):2730.CrossRef Ghodselahi T, Vesaghi M, Shafiekhani A, Baghizadeh A, Lameii M. XPS study of the Cu@Cu2O core-shell nanoparticles. Appl Surf Sci. 2008;255(5):2730.CrossRef
[42]
go back to reference Poulston S, Parlett P, Stone P, Bowker M. Surface oxidation and reduction of CuO and Cu2O studied using XPS and XAES. Surf Interface Anal. 1996;24(12):811.CrossRef Poulston S, Parlett P, Stone P, Bowker M. Surface oxidation and reduction of CuO and Cu2O studied using XPS and XAES. Surf Interface Anal. 1996;24(12):811.CrossRef
[43]
go back to reference Forrester S, Kikuchi D, Hernandes M, Xu Q, Griendling K. Reactive oxygen species in metabolic and inflammatory signaling. Circ Res. 2018;122(6):877.CrossRef Forrester S, Kikuchi D, Hernandes M, Xu Q, Griendling K. Reactive oxygen species in metabolic and inflammatory signaling. Circ Res. 2018;122(6):877.CrossRef
[44]
go back to reference Hensley K, Robinson K, Gabbita S, Salsman S, Floyd R. Reactive oxygen species, cell signaling, and cell injury, Free Radic. Biol Med. 2000;28(10):1456. Hensley K, Robinson K, Gabbita S, Salsman S, Floyd R. Reactive oxygen species, cell signaling, and cell injury, Free Radic. Biol Med. 2000;28(10):1456.
[45]
go back to reference Czaja M. Cell signaling in oxidative stress-induced liver injury. Semin Liver Dis. 2007;27(4):378.CrossRef Czaja M. Cell signaling in oxidative stress-induced liver injury. Semin Liver Dis. 2007;27(4):378.CrossRef
[46]
go back to reference Van B, Dat J. Reactive oxygen species in plant cell death. Plant Physiol. 2006;141(2):384.CrossRef Van B, Dat J. Reactive oxygen species in plant cell death. Plant Physiol. 2006;141(2):384.CrossRef
[47]
go back to reference Prasad K, Dhar I. Oxidative stress as a mechanism of added sugar-induced cardiovascular disease. Int J Angiol. 2014;23(4):217.CrossRef Prasad K, Dhar I. Oxidative stress as a mechanism of added sugar-induced cardiovascular disease. Int J Angiol. 2014;23(4):217.CrossRef
[48]
go back to reference Yun S, Oh H, Rhee S, Yoo Y. Regulation of reactive oxygen species generation in cell signaling. Mol Cells. 2011;32(6):491.CrossRef Yun S, Oh H, Rhee S, Yoo Y. Regulation of reactive oxygen species generation in cell signaling. Mol Cells. 2011;32(6):491.CrossRef
[49]
go back to reference Coyle C, Martinez L, Coleman M, Spitz D, Weintraub N, Kader K. Mechanisms of H2O2-induced oxidative stress in endothelial cells, Free Radic. Bio Med. 2006;40(12):2206. Coyle C, Martinez L, Coleman M, Spitz D, Weintraub N, Kader K. Mechanisms of H2O2-induced oxidative stress in endothelial cells, Free Radic. Bio Med. 2006;40(12):2206.
[50]
go back to reference Stohs SJ, Bagchi D. Oxidative mechanisms in the toxicity of metal ions, Free Radic. Bio Med. 1995;18(2):321. Stohs SJ, Bagchi D. Oxidative mechanisms in the toxicity of metal ions, Free Radic. Bio Med. 1995;18(2):321.
[51]
go back to reference Sun Y, Tian P, Ding D, Yang Z, Han Y. Revealing the active species of Cu-based catalysts for heterogeneous Fenton reaction. Appl Catal B Environ. 2019;258:117985.CrossRef Sun Y, Tian P, Ding D, Yang Z, Han Y. Revealing the active species of Cu-based catalysts for heterogeneous Fenton reaction. Appl Catal B Environ. 2019;258:117985.CrossRef
[52]
go back to reference Koppenol W. The Haber-Weiss cycle—70 years later. Redox Rep. 2001;6(4):229.CrossRef Koppenol W. The Haber-Weiss cycle—70 years later. Redox Rep. 2001;6(4):229.CrossRef
Metadata
Title
Antibacterial mechanism of Cu-bearing 430 ferritic stainless steel
Authors
Zhuang Zhang
Xin-Rui Zhang
Tao Jin
Chun-Guang Yang
Yu-Peng Sun
Qi Li
Ke Yang
Publication date
20-06-2021
Publisher
Nonferrous Metals Society of China
Published in
Rare Metals / Issue 2/2022
Print ISSN: 1001-0521
Electronic ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-021-01751-y

Other articles of this Issue 2/2022

Rare Metals 2/2022 Go to the issue

Premium Partners