Skip to main content
Top

Hint

Swipe to navigate through the chapters of this book

2016 | OriginalPaper | Chapter

Aplysia Californica as a Novel Source of Material for Biohybrid Robots and Organic Machines

Authors : Victoria A. Webster, Katherine J. Chapin, Emma L. Hawley, Jill M. Patel, Ozan Akkus, Hillel J. Chiel, Roger D. Quinn

Published in: Biomimetic and Biohybrid Systems

Publisher: Springer International Publishing

share
SHARE

Abstract

Aplysia californica is presented as a novel source of actuator and scaffold material for biohybrid robots. Collagen isolated from the Aplysia skin has been fabricated into gels and electrocompacted scaffolds. Additionally, the I2 muscle from the Aplysia buccal mass had been isolated for use as an organic actuator. This muscle has been characterized and the maximum force was found to be 58.5 mN with a maximum muscle strain of 12 ± 3 %. Finally, a flexible 3D printed biohybrid robot has been fabricated which is powered by the I2 muscle and is capable of locomotion at 0.43 cm/min under field stimulation.
Literature
1.
go back to reference Feinberg, A.W., Feigel, A., Shevkoplyas, S.S., Sheehy, S., Whitesides, G.M., Parker, K.K.: Muscular thin films for building actuators and powering devices. Science 80(317), 1366–1370 (2007) CrossRef Feinberg, A.W., Feigel, A., Shevkoplyas, S.S., Sheehy, S., Whitesides, G.M., Parker, K.K.: Muscular thin films for building actuators and powering devices. Science 80(317), 1366–1370 (2007) CrossRef
2.
go back to reference Grosberg, A., Alford, P.W., McCain, M.L., Parker, K.K.: Ensembles of engineered cardiac tissues for physiological and pharmacological study: Heart on a chip. Lab Chip 11(24), 4165 (2011) CrossRef Grosberg, A., Alford, P.W., McCain, M.L., Parker, K.K.: Ensembles of engineered cardiac tissues for physiological and pharmacological study: Heart on a chip. Lab Chip 11(24), 4165 (2011) CrossRef
3.
go back to reference Vannozzi, L., Ricotti, L., Cianchetti, M., Bearzi, C., Gargioli, C., Rizzi, R., Dario, P., Menciassi, A.: Self-assembly of polydimethylsiloxane structures from 2D to 3D forbio-hybrid actuation. Bioinspir. Biomim. 10(5), 056001 (2015) CrossRef Vannozzi, L., Ricotti, L., Cianchetti, M., Bearzi, C., Gargioli, C., Rizzi, R., Dario, P., Menciassi, A.: Self-assembly of polydimethylsiloxane structures from 2D to 3D forbio-hybrid actuation. Bioinspir. Biomim. 10(5), 056001 (2015) CrossRef
4.
go back to reference Nagamine, K., Kawashima, T., Sekine, S., Ido, Y., Kanzaki, M., Nishizawa, M.: Spatiotemporally controlled contraction of micropatterned skeletal muscle cells on a hydrogel sheet. Lab Chip 11(3), 513–7 (2011) CrossRef Nagamine, K., Kawashima, T., Sekine, S., Ido, Y., Kanzaki, M., Nishizawa, M.: Spatiotemporally controlled contraction of micropatterned skeletal muscle cells on a hydrogel sheet. Lab Chip 11(3), 513–7 (2011) CrossRef
5.
go back to reference Nawroth, J.C., Lee, H., Feinberg, A.W., Ripplinger, C.M., McCain, M.L., Grosberg, A., Dabiri, J.O., Parker, K.K.: A tissue-engineered jellyfish with biomimetic propulsion. Nat. Biotechnol. 30(8), 792–797 (2012) CrossRef Nawroth, J.C., Lee, H., Feinberg, A.W., Ripplinger, C.M., McCain, M.L., Grosberg, A., Dabiri, J.O., Parker, K.K.: A tissue-engineered jellyfish with biomimetic propulsion. Nat. Biotechnol. 30(8), 792–797 (2012) CrossRef
6.
go back to reference Williams, B.J., Anand, S.V., Rajagopalan, J., Saif, M.T.A.: A self-propelled biohybrid swimmer at low Reynolds number. Nat. Commun. 5, 3081 (2014) Williams, B.J., Anand, S.V., Rajagopalan, J., Saif, M.T.A.: A self-propelled biohybrid swimmer at low Reynolds number. Nat. Commun. 5, 3081 (2014)
7.
go back to reference Xi, J., Schmidt, J.J., Montemagno, C.D.: Self-assembled microdevices driven by muscle. Nat. Mater. 4, 180–184 (2005) CrossRef Xi, J., Schmidt, J.J., Montemagno, C.D.: Self-assembled microdevices driven by muscle. Nat. Mater. 4, 180–184 (2005) CrossRef
8.
go back to reference Chan, V., Park, K., Collens, M.B., Kong, H., Saif, T.A., Bashir, R.: Development of miniaturized walking biological machines. Sci. Rep. 2, 857 (2012) CrossRef Chan, V., Park, K., Collens, M.B., Kong, H., Saif, T.A., Bashir, R.: Development of miniaturized walking biological machines. Sci. Rep. 2, 857 (2012) CrossRef
9.
go back to reference Cvetkovic, C., Raman, R., Chan, V., Williams, B.J., Tolish, M., Bajaj, P., Sakar, M.S., Asada, H.H., Taher, A., Taher A Saif, M., Bashir, R.: Three-dimensionally printed biological machines powered by skeletalmuscle. PNAS 111(28), 10125–10130 (2014) CrossRef Cvetkovic, C., Raman, R., Chan, V., Williams, B.J., Tolish, M., Bajaj, P., Sakar, M.S., Asada, H.H., Taher, A., Taher A Saif, M., Bashir, R.: Three-dimensionally printed biological machines powered by skeletalmuscle. PNAS 111(28), 10125–10130 (2014) CrossRef
10.
go back to reference Kim, J., Park, J., Yang, S., Baek, J., Kim, B., Lee, S.H., Yoon, E.-S., Chun, K., Park, S.: Establishment of a fabrication method for a long-term actuated hybrid cell robot. Lab Chip 7, 1504–1508 (2007) CrossRef Kim, J., Park, J., Yang, S., Baek, J., Kim, B., Lee, S.H., Yoon, E.-S., Chun, K., Park, S.: Establishment of a fabrication method for a long-term actuated hybrid cell robot. Lab Chip 7, 1504–1508 (2007) CrossRef
11.
go back to reference Webster, V.A., Hawley, E.L., Akkus, O., Chiel, H.J., Quinn, R.D.: Fabrication of electrocompacted aligned collagen morphs for cardiomyocyte powered living machines. In: Wilson, S.P., Verschure, P.F.M.J., Mura, A., Prescott, T.J. (eds.) Living Machines 2015. LNCS, vol. 9222, pp. 429–440. Springer, Heidelberg (2015) CrossRef Webster, V.A., Hawley, E.L., Akkus, O., Chiel, H.J., Quinn, R.D.: Fabrication of electrocompacted aligned collagen morphs for cardiomyocyte powered living machines. In: Wilson, S.P., Verschure, P.F.M.J., Mura, A., Prescott, T.J. (eds.) Living Machines 2015. LNCS, vol. 9222, pp. 429–440. Springer, Heidelberg (2015) CrossRef
12.
go back to reference Herr, H., Dennis, R.G.: A swimming robot actuated by living muscle tissue. J. Neuroeng. Rehabil. 1, 6 (2004) CrossRef Herr, H., Dennis, R.G.: A swimming robot actuated by living muscle tissue. J. Neuroeng. Rehabil. 1, 6 (2004) CrossRef
13.
go back to reference Baryshyan, A.L., Woods, W., Trimmer, B.A., Kaplan, D.L.: Isolation and maintenance-free culture of contractile myotubes from Manduca sexta embryos. PLoS One 7(2), e31598 (2012) CrossRef Baryshyan, A.L., Woods, W., Trimmer, B.A., Kaplan, D.L.: Isolation and maintenance-free culture of contractile myotubes from Manduca sexta embryos. PLoS One 7(2), e31598 (2012) CrossRef
14.
go back to reference Uesugi, K., Shimizu, K., Akiyama, Y., Hoshino, T., Iwabuchi, K., Morishima, K.: Contractile performance and controllability of insect muscle-powered bioactuator with different stimulation strategies for soft robotics. Soft Robot. 3(1), 13–22 (2016) CrossRef Uesugi, K., Shimizu, K., Akiyama, Y., Hoshino, T., Iwabuchi, K., Morishima, K.: Contractile performance and controllability of insect muscle-powered bioactuator with different stimulation strategies for soft robotics. Soft Robot. 3(1), 13–22 (2016) CrossRef
15.
go back to reference Kandel, E.: Behavioral Biology of Aplysia: Contribution to the Comparative Study of Opistobranch Molluscs. W.H. Freeman and Company, San Francisco (1979) Kandel, E.: Behavioral Biology of Aplysia: Contribution to the Comparative Study of Opistobranch Molluscs. W.H. Freeman and Company, San Francisco (1979)
16.
go back to reference Hurwitz, I., Neustadter, D., Morton, D.W., Chiel, H.J., Susswein, A.J.: Activity patterns of the B31/B32 pattern initiators innervating the I2 muscle of the buccal mass during normal feeding movements in Aplysia californica. J. Neurophysiol. 75(4), 1309–26 (1996) Hurwitz, I., Neustadter, D., Morton, D.W., Chiel, H.J., Susswein, A.J.: Activity patterns of the B31/B32 pattern initiators innervating the I2 muscle of the buccal mass during normal feeding movements in Aplysia californica. J. Neurophysiol. 75(4), 1309–26 (1996)
17.
go back to reference Mizuta, S., Miyagi, T., Yoshinaka, R.: Characterization of the quantitatively major collagen in the mantle of oyster Crassostrea gigas. Fish. Sci. 71(1), 229–235 (2005) CrossRef Mizuta, S., Miyagi, T., Yoshinaka, R.: Characterization of the quantitatively major collagen in the mantle of oyster Crassostrea gigas. Fish. Sci. 71(1), 229–235 (2005) CrossRef
18.
go back to reference Matsumura, T.: Shape, size and amino acid composition of collagen fibril of the starfish asterias amurensis Matsumura, T.: Shape, size and amino acid composition of collagen fibril of the starfish asterias amurensis
19.
go back to reference Cheng, X.: Umut a Gurkan, Christopher J Dehen, Michael P Tate, Hugh W Hillhouse, Garth J Simpson, and Ozan Akkus.: An electrochemical fabrication process for the assembly of anisotropically oriented collagen bundles. Biomaterials 29(22), 3278–3288 (2008) CrossRef Cheng, X.: Umut a Gurkan, Christopher J Dehen, Michael P Tate, Hugh W Hillhouse, Garth J Simpson, and Ozan Akkus.: An electrochemical fabrication process for the assembly of anisotropically oriented collagen bundles. Biomaterials 29(22), 3278–3288 (2008) CrossRef
20.
go back to reference Yu, S.N., Crago, P.E., Chiel, H.J.: Biomechanical properties and a kinetic simulation model of the smooth muscle I2 in the buccal mass of Aplysia. Biol. Cybern. 81, 505–513 (1999) CrossRef Yu, S.N., Crago, P.E., Chiel, H.J.: Biomechanical properties and a kinetic simulation model of the smooth muscle I2 in the buccal mass of Aplysia. Biol. Cybern. 81, 505–513 (1999) CrossRef
Metadata
Title
Aplysia Californica as a Novel Source of Material for Biohybrid Robots and Organic Machines
Authors
Victoria A. Webster
Katherine J. Chapin
Emma L. Hawley
Jill M. Patel
Ozan Akkus
Hillel J. Chiel
Roger D. Quinn
Copyright Year
2016
DOI
https://doi.org/10.1007/978-3-319-42417-0_33

Premium Partner