Skip to main content
Top
Published in: Neural Computing and Applications 18/2020

26-03-2020 | Original Article

Application of fuzzy logic-based MPPT technique for harvesting the heat energy dissipated by the wind generator stator windings to power single-phase AC grid systems

Authors: Rakesh Thankakan, Edward Rajan Samuel Nadar

Published in: Neural Computing and Applications | Issue 18/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The proposed research work investigates a thermoelectric energy harvester system for generating electricity from waste heat dissipated through the wind generator stator windings to feed a single-phase AC grid. Since the wind velocity is changing at every instant, a dynamic analysis is carried out under varying temperature conditions. A single thermoelectric module (TEM) can generate low power in the range of a few watts. To increase the power, the TEMs can be connected in square series–parallel configuration, as it has the benefit of non-varying internal resistance value. To operate the TEMs at maximum power under varying temperature conditions, the maximum power point tracking (MPPT) needs to be carried out to match the internal resistance of the TEM array with the load resistance. A fuzzy logic-based MPPT technique is employed during this work, in view that it is adaptive, robust and respond rapidly under varying temperature conditions. The change in accuracy of fuzzy logic-based MPPT controller in terms of maximum power point is found to be 95.18% to 99.24%. To feed the generated power to the single-phase AC grid, a DC–DC boost converter with controller and inverter is essential. A proportional integral (PI) controller is simple to implement and can provide an inverter with a constant DC voltage. A sine pulse width modulation (SPWM) inverter is employed in this work that has the capability of producing an appropriate voltage and frequency for interconnecting the system to AC grid. The entire system was developed and analysed using MATLAB-Simulink.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Lu C, Raghunathan V, Roy K (2011) Efficient design of micro-scale energy harvesting systems. IEEE J Emerg Sel Top Circuits Syst 1(3):254–266 Lu C, Raghunathan V, Roy K (2011) Efficient design of micro-scale energy harvesting systems. IEEE J Emerg Sel Top Circuits Syst 1(3):254–266
2.
go back to reference Karabetoglu S, Sisman A (2012) Characterization of a thermoelectric generator at low temperatures. Energy Convers Manag 62:47–50 Karabetoglu S, Sisman A (2012) Characterization of a thermoelectric generator at low temperatures. Energy Convers Manag 62:47–50
3.
go back to reference LeBlanc S (2014) Thermoelectric generators: linking material properties and systems engineering for waste heat recovery applications. Sustain Mater Technol 1–2:26–35 LeBlanc S (2014) Thermoelectric generators: linking material properties and systems engineering for waste heat recovery applications. Sustain Mater Technol 1–2:26–35
4.
go back to reference Dewan A, Ay SU, Nazmul Karim M, Beyenal H (2014) Alternative power sources for remote sensors: a review. J Power Sources 245:129–143 Dewan A, Ay SU, Nazmul Karim M, Beyenal H (2014) Alternative power sources for remote sensors: a review. J Power Sources 245:129–143
5.
go back to reference Samson D, Kluge M, Becker T, Schmid U (2011) Wireless sensor node powered by aircraft specific thermoelectric energy harvesting. Sens Actuators A: Physical1 72(1):240–244 Samson D, Kluge M, Becker T, Schmid U (2011) Wireless sensor node powered by aircraft specific thermoelectric energy harvesting. Sens Actuators A: Physical1 72(1):240–244
6.
go back to reference Elefsiniotis A, Kokorakis N, Becker T, Schmid U (2014) A thermoelectric-based energy harvesting module with extended operational temperature range for powering autonomous wireless sensor nodes in aircraft. Sens Actuators A: Physical 206:159–164 Elefsiniotis A, Kokorakis N, Becker T, Schmid U (2014) A thermoelectric-based energy harvesting module with extended operational temperature range for powering autonomous wireless sensor nodes in aircraft. Sens Actuators A: Physical 206:159–164
7.
go back to reference Agbossou A, Zhang Q, Sebald G, Guyomar D (2010) Solar micro-energy harvesting based on thermoelectric and latent heat effects. Part I: theoretical analysis. Sens Actuators A: Phys 163(1):277–283 Agbossou A, Zhang Q, Sebald G, Guyomar D (2010) Solar micro-energy harvesting based on thermoelectric and latent heat effects. Part I: theoretical analysis. Sens Actuators A: Phys 163(1):277–283
8.
go back to reference Zhang Q, Agbossou A, Feng Z, Cosnier M (2010) Solar micro-energy harvesting based on thermoelectric and latent heat effects. Part II: experimental analysis. Sens Actuators, A 163(1):284–290 Zhang Q, Agbossou A, Feng Z, Cosnier M (2010) Solar micro-energy harvesting based on thermoelectric and latent heat effects. Part II: experimental analysis. Sens Actuators, A 163(1):284–290
9.
go back to reference Tan G, Zhao D (2015) Study of a thermoelectric space cooling system integrated with phase change material. Appl Therm Eng 86:187–198 Tan G, Zhao D (2015) Study of a thermoelectric space cooling system integrated with phase change material. Appl Therm Eng 86:187–198
10.
go back to reference Lossec M, Multon B, Ahmed HB (2013) Sizing optimization of a thermoelectric generator set with heatsink for harvesting human body heat. Energy Convers Manag 68:260–265 Lossec M, Multon B, Ahmed HB (2013) Sizing optimization of a thermoelectric generator set with heatsink for harvesting human body heat. Energy Convers Manag 68:260–265
11.
go back to reference Mehta RJ, Zhang Y, Karthik C, Singh B, Siegel RW, Borca- Tasciuc T, Ramanath G (2012) A new class of doped nanobulk high-figure-of-merit thermoelectrics by scalable bottom-up assembly. Nature Mater 11:233–240 Mehta RJ, Zhang Y, Karthik C, Singh B, Siegel RW, Borca- Tasciuc T, Ramanath G (2012) A new class of doped nanobulk high-figure-of-merit thermoelectrics by scalable bottom-up assembly. Nature Mater 11:233–240
12.
go back to reference Biswas K, He J, Blum ID, Wu CI, Hogan TP, Seidman DN, Dravid VP, Kanatzidis MG (2012) High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 489:414–418 Biswas K, He J, Blum ID, Wu CI, Hogan TP, Seidman DN, Dravid VP, Kanatzidis MG (2012) High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 489:414–418
13.
go back to reference Nuwayhid R, Shihadeh A, Ghaddar N (2005) Development and testing of a domestic woodstove thermoelectric generator with natural convection cooling. Energy Convers Manag 46(9–10):1631–1643 Nuwayhid R, Shihadeh A, Ghaddar N (2005) Development and testing of a domestic woodstove thermoelectric generator with natural convection cooling. Energy Convers Manag 46(9–10):1631–1643
14.
go back to reference Champier D, B´ed´ecarrats JP, Kousksou T, Rivaletto M, Strub F, Pignolet P (2011) Study of a TE (thermoelectric) generator incorporated in a multifunction wood stove. Energy 36(3):1518–1526 Champier D, B´ed´ecarrats JP, Kousksou T, Rivaletto M, Strub F, Pignolet P (2011) Study of a TE (thermoelectric) generator incorporated in a multifunction wood stove. Energy 36(3):1518–1526
15.
go back to reference O’Shaughnessy S, Deasy M, Kinsella C, Doyle J, Robinson A (2013) Small scale electricity generation from a portable biomass cookstove: prototype design and preliminary results. Appl Energy 102:374–385 O’Shaughnessy S, Deasy M, Kinsella C, Doyle J, Robinson A (2013) Small scale electricity generation from a portable biomass cookstove: prototype design and preliminary results. Appl Energy 102:374–385
16.
go back to reference Liu X, Deng YD, Li Z, Su CQ (2015) Performance analysis of a waste heat recovery thermoelectric generation system for automotive application. Energy Convers Manag 90:121–127 Liu X, Deng YD, Li Z, Su CQ (2015) Performance analysis of a waste heat recovery thermoelectric generation system for automotive application. Energy Convers Manag 90:121–127
17.
go back to reference Orr B, Akbarzadeh A, Mochizuki M, Singh R (2016) A review of car waste heat recovery systems utilizing thermoelectric generators and heat pipes. Appl Therm Eng 101:490–495 Orr B, Akbarzadeh A, Mochizuki M, Singh R (2016) A review of car waste heat recovery systems utilizing thermoelectric generators and heat pipes. Appl Therm Eng 101:490–495
18.
go back to reference Crane D, LaGrandeur J, Jovovic V, Ranalli M, Adldinger M, Poliquin E, Dean J, Kossakovski D, Mazar B, Maranville C (2012) TEG on-vehicle performance and model validation and what it means for further TEG development. J Electron Mater 42(7):1582–1591 Crane D, LaGrandeur J, Jovovic V, Ranalli M, Adldinger M, Poliquin E, Dean J, Kossakovski D, Mazar B, Maranville C (2012) TEG on-vehicle performance and model validation and what it means for further TEG development. J Electron Mater 42(7):1582–1591
19.
go back to reference Risse S, Zellbeck H (2013) Close-coupled exhaust gas energy recovery in a gasoline engine. Res Therm Manag 74(1):54–61 Risse S, Zellbeck H (2013) Close-coupled exhaust gas energy recovery in a gasoline engine. Res Therm Manag 74(1):54–61
20.
go back to reference Li M, Xu S, Chen Q, Zheng L (2011) Thermoelectric-generator-based DC–dc conversion networks for automotive applications. J Electron Mater 40(5):1136–1143 Li M, Xu S, Chen Q, Zheng L (2011) Thermoelectric-generator-based DC–dc conversion networks for automotive applications. J Electron Mater 40(5):1136–1143
21.
go back to reference Kyono T, Suzuki R, Ono K (2003) Conversion of unused heat energy to electricity by means of thermoelectric generation in condenser. IEEE Trans Energy Convers 18(2):330–334 Kyono T, Suzuki R, Ono K (2003) Conversion of unused heat energy to electricity by means of thermoelectric generation in condenser. IEEE Trans Energy Convers 18(2):330–334
22.
go back to reference Bensaid S, Brignone M, Ziggiotti A, Specchia S (2012) High efficiency thermo-electric power generator. Int J Hydrog Energy 37(2):1385–1398 Bensaid S, Brignone M, Ziggiotti A, Specchia S (2012) High efficiency thermo-electric power generator. Int J Hydrog Energy 37(2):1385–1398
23.
go back to reference Suter C, Jovanovic Z, Steinfeld A (2012) A 1kWe thermoelectric stack for geothermal power generation—modeling and geometrical optimization. Appl Energy 99:379–385 Suter C, Jovanovic Z, Steinfeld A (2012) A 1kWe thermoelectric stack for geothermal power generation—modeling and geometrical optimization. Appl Energy 99:379–385
24.
go back to reference Kasa N, Iida T, Chen L (2005) Flyback inverter controlled by sensorless current MPPT for photovoltaic power system. IEEE Trans Indust Electron 52(4):1145–1152 Kasa N, Iida T, Chen L (2005) Flyback inverter controlled by sensorless current MPPT for photovoltaic power system. IEEE Trans Indust Electron 52(4):1145–1152
25.
go back to reference Kim RY, Lai JS (2008) A seamless mode transfer maximum power point tracking controller for thermoelectric generator applications. IEEE Trans Power Electron 23(5):2310–2318 Kim RY, Lai JS (2008) A seamless mode transfer maximum power point tracking controller for thermoelectric generator applications. IEEE Trans Power Electron 23(5):2310–2318
26.
go back to reference Champier D, Favarel C, B´ed´ecarrats JP, Kousksou T, Rozis JF (2013) Prototype combined heater/thermoelectric power generator for remote applications. J Electron Mater 42(7):1888–1899 Champier D, Favarel C, B´ed´ecarrats JP, Kousksou T, Rozis JF (2013) Prototype combined heater/thermoelectric power generator for remote applications. J Electron Mater 42(7):1888–1899
27.
go back to reference Eakburanawat J, Boonyaroonate I (2006) Development of a thermoelectric batterycharger with microcontroller-based maximum power point tracking technique. Appl Energy 83:687–704 Eakburanawat J, Boonyaroonate I (2006) Development of a thermoelectric batterycharger with microcontroller-based maximum power point tracking technique. Appl Energy 83:687–704
28.
go back to reference Fernia N, Petrone G, Spagnuolo G, Vitelli M (2005) Optimization of perturb and observe maximum power point tracking method. IEEE Trans Power Electron 20(4):963–973 Fernia N, Petrone G, Spagnuolo G, Vitelli M (2005) Optimization of perturb and observe maximum power point tracking method. IEEE Trans Power Electron 20(4):963–973
29.
go back to reference Khan MJ, Mathew L (2018) Fuzzy logic controller-based MPPT for hybrid photo-voltaic/wind/fuel cell power system. Neural Comput Appl 29(10):1–14 Khan MJ, Mathew L (2018) Fuzzy logic controller-based MPPT for hybrid photo-voltaic/wind/fuel cell power system. Neural Comput Appl 29(10):1–14
30.
go back to reference Hang L, Liu S, Yan G, Qu B, Lu Z (2011) An improved deadbeat scheme with fuzzy controller for the grid-side three-phase PWM boost rectifier. IEEE Trans Power Electron 26(4):1184–1191 Hang L, Liu S, Yan G, Qu B, Lu Z (2011) An improved deadbeat scheme with fuzzy controller for the grid-side three-phase PWM boost rectifier. IEEE Trans Power Electron 26(4):1184–1191
31.
go back to reference Singh M, Chandra A (2011) application of adaptive network-based fuzzy inference system for sensorless control of PMSG-based wind turbine with nonlinear-load-compensation capabilities. IEEE Trans Power Electron 26(1):165–175MathSciNet Singh M, Chandra A (2011) application of adaptive network-based fuzzy inference system for sensorless control of PMSG-based wind turbine with nonlinear-load-compensation capabilities. IEEE Trans Power Electron 26(1):165–175MathSciNet
32.
go back to reference Uddin MN, Rebeiro RS (2011) Online efficiency optimization of a fuzzy-logic-controller-based ipmsm drive. IEEE Trans Indust Appl 47(2):1043–1050 Uddin MN, Rebeiro RS (2011) Online efficiency optimization of a fuzzy-logic-controller-based ipmsm drive. IEEE Trans Indust Appl 47(2):1043–1050
33.
go back to reference Alajmi BN, Ahmed KH, Finney SJ, Williams BW (2011) Fuzzy-logic-control approach of a modified hill-climbing method for maximum power point in microgrid standalone photovoltaic system. IEEE Trans Power Electron 26(4):1022–1030 Alajmi BN, Ahmed KH, Finney SJ, Williams BW (2011) Fuzzy-logic-control approach of a modified hill-climbing method for maximum power point in microgrid standalone photovoltaic system. IEEE Trans Power Electron 26(4):1022–1030
34.
go back to reference Thankakan R, Samuel Nadar ER (2019) Analysis of Bi-Te based thermoelectric modules connected to square series-parallel configuration with isolated power electronics converter for DC micro-grid applications. J Electron Mater 48(9):5497–5509 Thankakan R, Samuel Nadar ER (2019) Analysis of Bi-Te based thermoelectric modules connected to square series-parallel configuration with isolated power electronics converter for DC micro-grid applications. J Electron Mater 48(9):5497–5509
35.
go back to reference Thankakan R, Samuel Nadar ER (2018) Investigation of thermoelectric generators connected in different configurations for micro-grid applications. Int J Energy Res 42(6):2290–2301 Thankakan R, Samuel Nadar ER (2018) Investigation of thermoelectric generators connected in different configurations for micro-grid applications. Int J Energy Res 42(6):2290–2301
36.
go back to reference Boroujeni HZ, Othman MF, Shirdel AH, Rahmani R, Movahedi P, Toosi ES (2015) Improving waveform quality in direct power control of DFIG using fuzzy controller. Neural Comput Appl 26(4):949–955 Boroujeni HZ, Othman MF, Shirdel AH, Rahmani R, Movahedi P, Toosi ES (2015) Improving waveform quality in direct power control of DFIG using fuzzy controller. Neural Comput Appl 26(4):949–955
Metadata
Title
Application of fuzzy logic-based MPPT technique for harvesting the heat energy dissipated by the wind generator stator windings to power single-phase AC grid systems
Authors
Rakesh Thankakan
Edward Rajan Samuel Nadar
Publication date
26-03-2020
Publisher
Springer London
Published in
Neural Computing and Applications / Issue 18/2020
Print ISSN: 0941-0643
Electronic ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-020-04865-z

Other articles of this Issue 18/2020

Neural Computing and Applications 18/2020 Go to the issue

Extreme Learning Machine and Deep Learning Networks

Inverse partitioned matrix-based semi-random incremental ELM for regression

Premium Partner