Skip to main content
Top
Published in: Journal of Applied and Industrial Mathematics 4/2020

01-11-2020

Application of Geodesic Grids for Modeling the Hydrodynamic Processes in Spherical Objects

Authors: I. M. Kulikov, E. I. Vorobyov, I. G. Chernykh, V. G. Elbakyan

Published in: Journal of Applied and Industrial Mathematics | Issue 4/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We propose a new numerical method that bases on the mathematical apparatus of geodesic grids. This approach allows us to simulate spherical objects without any singularities that occur in using spherical or cylindrical coordinates. Solution of hyperbolic equations is described in detail. The method is expanded to solve the equations of hydrodynamics and tested on the Sedov point explosion problem. The numerical method and the approach to grid construction make it possible to compute a rotation invariant solution in Cartesian coordinates. This in turn allows us to use this approach effectively for simulating various spherical astrophysical objects.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference K. Kadam, E. Vorobyov, Z. Regaly, A. Kospal, and P. Abraham, “Dynamical Gaseous Rings in Global Simulations of Protoplanetary Disk Formation,” Astrophys. J. 882 (2), Article No. 96 (2019). K. Kadam, E. Vorobyov, Z. Regaly, A. Kospal, and P. Abraham, “Dynamical Gaseous Rings in Global Simulations of Protoplanetary Disk Formation,” Astrophys. J. 882 (2), Article No. 96 (2019).
2.
go back to reference E. Akiyama, E. Vorobyov, Liu H. Baobabu, et al. “A Tail Structure Associated with a Protoplanetary Disk Around SU Aurigae,” Astron. J. 157 (4), Article No. 165 (2019). E. Akiyama, E. Vorobyov, Liu H. Baobabu, et al. “A Tail Structure Associated with a Protoplanetary Disk Around SU Aurigae,” Astron. J. 157 (4), Article No. 165 (2019).
3.
go back to reference D. M. Meyer, E. I. Vorobyov, and V. G. Elbakyan, “Burst Occurrence in Young Massive Stellar Objects,” Monthly Not. Royal Astron. Soc. 482 (4), 5459–5476 (2019).CrossRef D. M. Meyer, E. I. Vorobyov, and V. G. Elbakyan, “Burst Occurrence in Young Massive Stellar Objects,” Monthly Not. Royal Astron. Soc. 482 (4), 5459–5476 (2019).CrossRef
4.
go back to reference Z. Regaly and E. Vorobyov, “The Circumstellar Disk Response to the Motion of the Host Star,” Astronomy and Astrophys. 601, Article No. A24 (2017). Z. Regaly and E. Vorobyov, “The Circumstellar Disk Response to the Motion of the Host Star,” Astronomy and Astrophys. 601, Article No. A24 (2017).
5.
go back to reference I. Baraffe, V. G. Elbakyan, E. I. Vorobyov, and G. Chabrier, “Self-Consistent Evolution of Accreting Low-Mass Stars and Brown Dwarfs,” Astronomy and Astrophys. 597, Article No. A19 (2017). I. Baraffe, V. G. Elbakyan, E. I. Vorobyov, and G. Chabrier, “Self-Consistent Evolution of Accreting Low-Mass Stars and Brown Dwarfs,” Astronomy and Astrophys. 597, Article No. A19 (2017).
6.
go back to reference V. Vshivkov, G. Lazareva, A. Snytnikov, I. Kulikov, and A. Tutukov, “Hydrodynamical Code for Numerical Simulation of the Gas Components of Colliding Galaxies,” Astrophys. J. Suppl. Ser. 194 (2), Article No. 47 (2011). V. Vshivkov, G. Lazareva, A. Snytnikov, I. Kulikov, and A. Tutukov, “Hydrodynamical Code for Numerical Simulation of the Gas Components of Colliding Galaxies,” Astrophys. J. Suppl. Ser. 194 (2), Article No. 47 (2011).
7.
go back to reference I. Kulikov, G. Lazareva, A. Snytnikov, and V. Vshivkov, “Supercomputer Simulation of an Astrophysical Object Collapse by the Fluids-in-Cell Method,” in Lecture Notes in Computer Science, Vol. 5698 (Elsevier, Heidelberg, 2009), pp. 414–422. I. Kulikov, G. Lazareva, A. Snytnikov, and V. Vshivkov, “Supercomputer Simulation of an Astrophysical Object Collapse by the Fluids-in-Cell Method,” in Lecture Notes in Computer Science, Vol. 5698 (Elsevier, Heidelberg, 2009), pp. 414–422.
8.
go back to reference I. Kulikov, “The Numerical Modeling of the Collapse of Molecular Cloud on Adaptive Nested Mesh,” J. Phys. Conf. Ser. 1103, Article No. 012011 (2018). I. Kulikov, “The Numerical Modeling of the Collapse of Molecular Cloud on Adaptive Nested Mesh,” J. Phys. Conf. Ser. 1103, Article No. 012011 (2018).
9.
go back to reference N. Ardeljan, G. Bisnovatyi-Kogan, and S. Moiseenko, “An Implicit Lagrangian Code for the Treatment of Nonstationary Problems in Rotating Astrophysical Bodies,” Astron. Astrophys. 115, 573–594 (1996). N. Ardeljan, G. Bisnovatyi-Kogan, and S. Moiseenko, “An Implicit Lagrangian Code for the Treatment of Nonstationary Problems in Rotating Astrophysical Bodies,” Astron. Astrophys. 115, 573–594 (1996).
10.
go back to reference V. Springel, “E Pur Si Muove: Galilean-Invariant Cosmological Hydrodynamical Simulations on a Moving Mesh,” Monthly Not. Royal Astron. Soc. 401, 791–851 (2010).CrossRef V. Springel, “E Pur Si Muove: Galilean-Invariant Cosmological Hydrodynamical Simulations on a Moving Mesh,” Monthly Not. Royal Astron. Soc. 401, 791–851 (2010).CrossRef
11.
12.
go back to reference P. Mocz, M. Vogelsberger, D. Sijacki, R. Pakmor, and L. Hernquist, “A Discontinuous Galerkin Method for Solving the Fluid and Magnetohydrodynamic Equations in Astrophysical Simulations,” Monthly Not. Royal Astron. Soc. 437 (1), 397–414 (2014).CrossRef P. Mocz, M. Vogelsberger, D. Sijacki, R. Pakmor, and L. Hernquist, “A Discontinuous Galerkin Method for Solving the Fluid and Magnetohydrodynamic Equations in Astrophysical Simulations,” Monthly Not. Royal Astron. Soc. 437 (1), 397–414 (2014).CrossRef
13.
go back to reference K. Schaal et al. “Astrophysical Hydrodynamics with a High-Order Discontinuous Galerkin Scheme and Adaptive Mesh Refinement,” Monthly Not. Royal Astron. Soc. 453 (4), 4278–4300 (2015). K. Schaal et al. “Astrophysical Hydrodynamics with a High-Order Discontinuous Galerkin Scheme and Adaptive Mesh Refinement,” Monthly Not. Royal Astron. Soc. 453 (4), 4278–4300 (2015).
14.
go back to reference J. Murphy and A. Burrows, “BETHE-Hydro: An Arbitrary Lagrangian-Eulerian Multidimensional Hydrodynamics Code for Astrophysical Simulations,” Astrophys. J. Suppl. Ser. 179, 209–241 (2008).CrossRef J. Murphy and A. Burrows, “BETHE-Hydro: An Arbitrary Lagrangian-Eulerian Multidimensional Hydrodynamics Code for Astrophysical Simulations,” Astrophys. J. Suppl. Ser. 179, 209–241 (2008).CrossRef
15.
go back to reference P. Hopkins, “A New Class of Accurate, Mesh-Free Hydrodynamic Simulation Methods,” Monthly Not. Royal Astron. Soc. 450 (1), 53–110 (2015).CrossRef P. Hopkins, “A New Class of Accurate, Mesh-Free Hydrodynamic Simulation Methods,” Monthly Not. Royal Astron. Soc. 450 (1), 53–110 (2015).CrossRef
16.
go back to reference B. Glinsky, I. Kulikov, I. Chernykh, et al. “The Co-Design of Astrophysical Code for Massively Parallel Supercomputers,” in Lecture Notes in Computer Science, Vol. 10049 (Elsevier, Heidelberg, 2016), pp. 342–353. B. Glinsky, I. Kulikov, I. Chernykh, et al. “The Co-Design of Astrophysical Code for Massively Parallel Supercomputers,” in Lecture Notes in Computer Science, Vol. 10049 (Elsevier, Heidelberg, 2016), pp. 342–353.
17.
go back to reference I. Kulikov, I. Chernykh, B. Glinskiy, D. Weins, and A. Shmelev, “Astrophysics Simulation on RSC Massively Parallel Architecture,” in Proceedings—2015 IEEE/ACM 15th International Symposium on Cluster, Cloud, and Grid Computing, CCGrid 2015 , pp. 1131–1134. I. Kulikov, I. Chernykh, B. Glinskiy, D. Weins, and A. Shmelev, “Astrophysics Simulation on RSC Massively Parallel Architecture,” in Proceedings—2015 IEEE/ACM 15th International Symposium on Cluster, Cloud, and Grid Computing, CCGrid 2015 , pp. 1131–1134.
18.
go back to reference D. Balsara, V. Florinski, S. Garain, S. Subramanian, and K. Gurski, “Efficient, Divergence-Free, High-Order MHD on 3D Spherical Meshes with Optimal Geodesic Meshing,” Monthly Not. Royal Astron. Soc. 487 (1), 1283–1314 (2019).CrossRef D. Balsara, V. Florinski, S. Garain, S. Subramanian, and K. Gurski, “Efficient, Divergence-Free, High-Order MHD on 3D Spherical Meshes with Optimal Geodesic Meshing,” Monthly Not. Royal Astron. Soc. 487 (1), 1283–1314 (2019).CrossRef
19.
go back to reference I. Kulikov, “GPUPEGAS: A New GPU-Accelerated Hydrodynamic Code for Numerical Simulations of Interacting Galaxies,” Astrophys. J. Suppl. Ser. 214, Article No. 12 (2014). I. Kulikov, “GPUPEGAS: A New GPU-Accelerated Hydrodynamic Code for Numerical Simulations of Interacting Galaxies,” Astrophys. J. Suppl. Ser. 214, Article No. 12 (2014).
20.
go back to reference I. M. Kulikov, I. G. Chernykh, A. V. Snytnikov, B. M. Glinskiy, and A. V. Tutukov, “AstroPhi: A Code for Complex Simulation of Dynamics of Astrophysical Objects Using Hybrid Supercomputers,” Comput. Phys. Comm. 186, 71–80 (2015).CrossRef I. M. Kulikov, I. G. Chernykh, A. V. Snytnikov, B. M. Glinskiy, and A. V. Tutukov, “AstroPhi: A Code for Complex Simulation of Dynamics of Astrophysical Objects Using Hybrid Supercomputers,” Comput. Phys. Comm. 186, 71–80 (2015).CrossRef
21.
go back to reference I. M. Kulikov, I. G. Chernykh, B. M. Glinskiy, and V. A. Protasov, “An Efficient Optimization of the Hill Method for the Second Generation of Intel Xeon Phi Processor,” Lobachevskii J. Math. 39 (4), 543–551 (2018).MathSciNetCrossRef I. M. Kulikov, I. G. Chernykh, B. M. Glinskiy, and V. A. Protasov, “An Efficient Optimization of the Hill Method for the Second Generation of Intel Xeon Phi Processor,” Lobachevskii J. Math. 39 (4), 543–551 (2018).MathSciNetCrossRef
22.
go back to reference I. M. Kulikov, I. G. Chernykh, and A. V. Tutukov, “A New Parallel Intel Xeon Phi Hydrodynamics Code for Massively Parallel Supercomputers,” Lobachevskii J. Math. 39 (9), 1207–1216 (2018).MathSciNetCrossRef I. M. Kulikov, I. G. Chernykh, and A. V. Tutukov, “A New Parallel Intel Xeon Phi Hydrodynamics Code for Massively Parallel Supercomputers,” Lobachevskii J. Math. 39 (9), 1207–1216 (2018).MathSciNetCrossRef
23.
go back to reference D. Balsara and D. Spicer, “Maintaining Pressure Positivity in Magnetohydrodynamic Simulations,” J. Comput. Phys. 148, 133–148 (1999).MathSciNetCrossRef D. Balsara and D. Spicer, “Maintaining Pressure Positivity in Magnetohydrodynamic Simulations,” J. Comput. Phys. 148, 133–148 (1999).MathSciNetCrossRef
24.
go back to reference V. Springel and L. Hernquist, “Cosmological Smoothed Particle Hydrodynamics Simulations: The Entropy Equation,” Monthly Not. Royal Astron. Soc. 333, 649–664 (2002).CrossRef V. Springel and L. Hernquist, “Cosmological Smoothed Particle Hydrodynamics Simulations: The Entropy Equation,” Monthly Not. Royal Astron. Soc. 333, 649–664 (2002).CrossRef
25.
go back to reference S. Godunov and I. Kulikov, “Computation of Discontinuous Solutions of Fluid Dynamics Equations with Entropy Nondecrease Guarantee,” Comput. Math. Math. Phys. 54, 1012–1024 (2014).MathSciNetCrossRef S. Godunov and I. Kulikov, “Computation of Discontinuous Solutions of Fluid Dynamics Equations with Entropy Nondecrease Guarantee,” Comput. Math. Math. Phys. 54, 1012–1024 (2014).MathSciNetCrossRef
26.
go back to reference I. Kulikov, I. Chernykh, and A. Tutukov, “A New Hydrodynamic Code with Explicit Vectorization Instructions Optimizations, Dedicated to the Numerical Simulation of Astrophysical Gas Flow. I. Numerical Method, Tests, and Model Problems,” Astrophys. J. Suppl. Ser. 243, Article No. 4 (2019). I. Kulikov, I. Chernykh, and A. Tutukov, “A New Hydrodynamic Code with Explicit Vectorization Instructions Optimizations, Dedicated to the Numerical Simulation of Astrophysical Gas Flow. I. Numerical Method, Tests, and Model Problems,” Astrophys. J. Suppl. Ser. 243, Article No. 4 (2019).
27.
go back to reference I. Kulikov and E. Vorobyov, “Using the PPML Approach for Constructing a Low-Dissipation, Operator-Splitting Scheme for Numerical Simulations of Hydrodynamic Flows,” J. Comput. Phys. 317, 318–346 (2016).MathSciNetCrossRef I. Kulikov and E. Vorobyov, “Using the PPML Approach for Constructing a Low-Dissipation, Operator-Splitting Scheme for Numerical Simulations of Hydrodynamic Flows,” J. Comput. Phys. 317, 318–346 (2016).MathSciNetCrossRef
Metadata
Title
Application of Geodesic Grids for Modeling the Hydrodynamic Processes in Spherical Objects
Authors
I. M. Kulikov
E. I. Vorobyov
I. G. Chernykh
V. G. Elbakyan
Publication date
01-11-2020
Publisher
Pleiades Publishing
Published in
Journal of Applied and Industrial Mathematics / Issue 4/2020
Print ISSN: 1990-4789
Electronic ISSN: 1990-4797
DOI
https://doi.org/10.1134/S1990478920040067

Other articles of this Issue 4/2020

Journal of Applied and Industrial Mathematics 4/2020 Go to the issue

Premium Partners