Skip to main content
Top
Published in: Mechanics of Composite Materials 2/2024

27-04-2024

Application of Polyethylene Terephthalate as a Denture Base Material for Manufacturing Temporary Removable Complete Dentures

Authors: E. A. Chizhmakov, A. S. Arutyunov, S. A. Muslov, S. A. Bochkareva, I. L. Panov, G. D. Akhmedov, D. G. Buslovich, S. V. Panin, S. D. Arutyunov

Published in: Mechanics of Composite Materials | Issue 2/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The mechanical properties of both polymethyl methacrylate (PMMA) and polyethylene terephthate (PET) were examined in tensile and three-point bending tests, as well as their bond and interlayer shear strengths were assessed. The results obtained were employed in computer simulation of mechanical loading of temporary removable complete dentures (TRCDs). It was shown that the variations of the elastic moduli of the dental materials studied did not exceed 15.6%; the ultimate strength of PET was higher than that of PMMA by ~2.2 times in tension and by ~1.9 times in bending. Elongation at break was greater for the PET specimens than those for the PMMA ones by ~2.3 times in tension and by ~3.1 times in bending. Computer simulation has shown that when the load was applied at the angle of 90°, the tooth fractured in all cases. Stresses were much lower in the denture base concerning the critical levels. Therefore, the adhesion conditions considered did not affect the pattern of their failure, and the critical load was the same for both denture base materials. When the load was applied to canines at the angle of 45°, the critical load was below the specified level of 100 N in the PMMA denture base due to the peculiarities of TRCD design and the lower strength of PMMA. When both canines and incisors were loaded at the angle of 45°, the PET denture base could withstand the greater critical load than the PMMA one. Both mechanical tests and computer simulation results enabled to conclude that PET is the prospect denture base material for the manufacture of TRCDs and dental orthopedic treatment.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference J. Albinmousa, J. AlSadah, M. A. Hawwa, and H. M. Al-Qahtani, “Estimation of mixed-mode I/II fracture of u-notched polycarbonate specimens using the TCD and SED methods,” Phys. Mesomech., 26, No. 1, 66 (2023). J. Albinmousa, J. AlSadah, M. A. Hawwa, and H. M. Al-Qahtani, “Estimation of mixed-mode I/II fracture of u-notched polycarbonate specimens using the TCD and SED methods,” Phys. Mesomech., 26, No. 1, 66 (2023).
2.
go back to reference N. Rahmat, J. Kadkhodapour, and M. Arbabtafti, “Mechanical characterization of additively manufactured orthopedic cellular implants: case study on different cell types and effect of defects,” Phys. Mesomech., 26, No. 4, 443-458 (2023).CrossRef N. Rahmat, J. Kadkhodapour, and M. Arbabtafti, “Mechanical characterization of additively manufactured orthopedic cellular implants: case study on different cell types and effect of defects,” Phys. Mesomech., 26, No. 4, 443-458 (2023).CrossRef
3.
go back to reference D. Gribov, M. Antonik, D. Butkov, A. Stepanov, P. Antonik, Y. Kharakh, A. Pivovarov, and S. Arutyunov, “Personalized biomechanical analysis of the mandible teeth behavior in the treatment of masticatory muscles parafunction,” J. Funct. Biomater., 12, No. 2, 23 (2021). D. Gribov, M. Antonik, D. Butkov, A. Stepanov, P. Antonik, Y. Kharakh, A. Pivovarov, and S. Arutyunov, “Personalized biomechanical analysis of the mandible teeth behavior in the treatment of masticatory muscles parafunction,” J. Funct. Biomater., 12, No. 2, 23 (2021).
4.
go back to reference G. Galo Silva, M. L. D. C. Valente, L. Bachmann, and A. C. Dos Reis, “Use of polyethylene terephthalate as a prosthetic component in the prosthesis on an overdenture implant,” Mater. Sci. Eng., 99, 1341-1349 (2019). G. Galo Silva, M. L. D. C. Valente, L. Bachmann, and A. C. Dos Reis, “Use of polyethylene terephthalate as a prosthetic component in the prosthesis on an overdenture implant,” Mater. Sci. Eng., 99, 1341-1349 (2019).
5.
go back to reference M.-T. Dawid, O. Moldovan, H. Rudolph, K. Kuhn, and R. G. Luthardt, “technical complications of removable partial dentures in the moderately reduced dentition: A systematic review,” Dent. J., 55, 11 (2023). M.-T. Dawid, O. Moldovan, H. Rudolph, K. Kuhn, and R. G. Luthardt, “technical complications of removable partial dentures in the moderately reduced dentition: A systematic review,” Dent. J., 55, 11 (2023).
6.
go back to reference J. Patel, R. Jablonski, and L. A. Morrow, “Complete dentures: an update on clinical assessment and management: part 1,” Br. Dent. J., 225, 707-714 (2018).CrossRef J. Patel, R. Jablonski, and L. A. Morrow, “Complete dentures: an update on clinical assessment and management: part 1,” Br. Dent. J., 225, 707-714 (2018).CrossRef
7.
go back to reference R. Y. Jablonski, J. Patel, and L. A. Morrow, “Complete dentures: an update on clinical assessment and management: part 2” Br. Dent. J., 225, No. 10, 933-939 (2018).CrossRefPubMed R. Y. Jablonski, J. Patel, and L. A. Morrow, “Complete dentures: an update on clinical assessment and management: part 2” Br. Dent. J., 225, No. 10, 933-939 (2018).CrossRefPubMed
8.
go back to reference A. C. Alves, R. V. Cavalcanti, P. S. Calderon, L. Pernambuco, and J. C. Alchieri, “Quality of life related to complete denture. Qualidade de vida relacionada à prótese total,” Acta Odontologica Latinoamericana, 31, No. 2, 91-96, (2018).PubMed A. C. Alves, R. V. Cavalcanti, P. S. Calderon, L. Pernambuco, and J. C. Alchieri, “Quality of life related to complete denture. Qualidade de vida relacionada à prótese total,” Acta Odontologica Latinoamericana, 31, No. 2, 91-96, (2018).PubMed
9.
go back to reference U. Soboleva and I. Rogovska, “Edentulous patient satisfaction with conventional complete dentures,” Medicina (Kaunas, Lithuania), 58, No. 3, 344, (2022). U. Soboleva and I. Rogovska, “Edentulous patient satisfaction with conventional complete dentures,” Medicina (Kaunas, Lithuania), 58, No. 3, 344, (2022).
10.
go back to reference M. C. Goiato, E. Freitas, D. dos Santos, de R. Medeiros, and M. Sonego, “Acrylic resin cytotoxicity for denture base- literature review,” Adv. in Clinical and Experimental Medicine: official organ Wroclaw Medical University, 24, No. 4, 679-686, (2015). M. C. Goiato, E. Freitas, D. dos Santos, de R. Medeiros, and M. Sonego, “Acrylic resin cytotoxicity for denture base- literature review,” Adv. in Clinical and Experimental Medicine: official organ Wroclaw Medical University, 24, No. 4, 679-686, (2015).
11.
go back to reference Z. Raszewski “Influence of polymerization method on the cytotoxicity of three different denture base acrylic resins polymerized in different methods,” Saudi J. Biological Sci., 27, No. 10, 2612-2616, (2020).CrossRef Z. Raszewski “Influence of polymerization method on the cytotoxicity of three different denture base acrylic resins polymerized in different methods,” Saudi J. Biological Sci., 27, No. 10, 2612-2616, (2020).CrossRef
12.
go back to reference D. R. Monteiro, de Souza Batista, V. E., Caldeirão, A. C. M., Jacinto, R. C., and J. P. Pessan, “Oral prosthetic microbiology: aspects related to the oral microbiome, surface properties, and strategies for controlling biofilms,” Biofouling, 37, No. 4, 353-371 (2021). D. R. Monteiro, de Souza Batista, V. E., Caldeirão, A. C. M., Jacinto, R. C., and J. P. Pessan, “Oral prosthetic microbiology: aspects related to the oral microbiome, surface properties, and strategies for controlling biofilms,” Biofouling, 37, No. 4, 353-371 (2021).
13.
go back to reference S. D. Arutyunov, T. I. Ibragimov, V. N. Tsarev, I. Yu. Lebedenko, N. I. Savkina, A. G. Trefilov, A. S. Arutyunov, and Yu. I. Klimashin, “Microbiological validation of the choice of basic plastic for removable dentures,” Stomatologiya,” 3, 4-8 (2002). S. D. Arutyunov, T. I. Ibragimov, V. N. Tsarev, I. Yu. Lebedenko, N. I. Savkina, A. G. Trefilov, A. S. Arutyunov, and Yu. I. Klimashin, “Microbiological validation of the choice of basic plastic for removable dentures,” Stomatologiya,” 3, 4-8 (2002).
14.
go back to reference S. Arutyunov, L. Kirakosyan, L. Dubova, Y. Kharakh, N. Malginov, G. Akhmedov, and V. Tsarev, “Microbial adhesion to dental polymers for conventional, computer-aided subtractive and additive manufacture: A comparative in vitro study,” J. Functional Biomater., 13, No. 2, 42 (2022). S. Arutyunov, L. Kirakosyan, L. Dubova, Y. Kharakh, N. Malginov, G. Akhmedov, and V. Tsarev, “Microbial adhesion to dental polymers for conventional, computer-aided subtractive and additive manufacture: A comparative in vitro study,” J. Functional Biomater., 13, No. 2, 42 (2022).
15.
go back to reference A. I. Salimon, E. S. Statnik, Yu. Kan, O. O. Yanushevich, V. N. Tsarev, M. S. Podporin, S. D. Arutyunov, P. Yu. Skripnichenko, M. S. Galstyan, and A. M. Korsunsky, “Comparative study of biomaterial surface modification due to subcritical CO2 and autoclave disinfection treatment,” J. Supercritical Fluids., 191, 105789, 8 (2022). A. I. Salimon, E. S. Statnik, Yu. Kan, O. O. Yanushevich, V. N. Tsarev, M. S. Podporin, S. D. Arutyunov, P. Yu. Skripnichenko, M. S. Galstyan, and A. M. Korsunsky, “Comparative study of biomaterial surface modification due to subcritical CO2 and autoclave disinfection treatment,” J. Supercritical Fluids., 191, 105789, 8 (2022).
16.
go back to reference T. M. Santos Sousa, O. Rodrigues de Farias, A. U. Dantas Batista, E. Souto de Medeiros, B. M. Santiago, and Y. W. Cavalcanti, “Effectiveness of denture microwave disinfection for treatment of denture stomatitis: A systematic review and meta-analysis” Int. J. Dental Hygiene, 19, No. 1, 62-77 (2021). T. M. Santos Sousa, O. Rodrigues de Farias, A. U. Dantas Batista, E. Souto de Medeiros, B. M. Santiago, and Y. W. Cavalcanti, “Effectiveness of denture microwave disinfection for treatment of denture stomatitis: A systematic review and meta-analysis” Int. J. Dental Hygiene, 19, No. 1, 62-77 (2021).
17.
go back to reference Q. Wang, Y. Zhang, Q. Li, L. Chen, H. Liu, M. Ding, H. Dong, and Y. Mou, “Therapeutic Applications of Antimicrobial Silver-Based Biomaterials in Dentistry,” Int. J. Nanomedicine, 17, 443-462 (2022).CrossRefPubMedPubMedCentral Q. Wang, Y. Zhang, Q. Li, L. Chen, H. Liu, M. Ding, H. Dong, and Y. Mou, “Therapeutic Applications of Antimicrobial Silver-Based Biomaterials in Dentistry,” Int. J. Nanomedicine, 17, 443-462 (2022).CrossRefPubMedPubMedCentral
18.
go back to reference D. I. Grachev, N. S. Ruzuddinov, A. S. Arutyunov, G. D. Akhmedov, L. V. Dubova, Y. N. Kharakh, S. V. Panin, and S. D. Arutyunov, “Algorithm for designing a removable complete denture (RCD) based on the fem analysis of its service life,” Materials., 15, No. 20, (2022). D. I. Grachev, N. S. Ruzuddinov, A. S. Arutyunov, G. D. Akhmedov, L. V. Dubova, Y. N. Kharakh, S. V. Panin, and S. D. Arutyunov, “Algorithm for designing a removable complete denture (RCD) based on the fem analysis of its service life,” Materials., 15, No. 20, (2022).
19.
go back to reference E. Sunbuloglu, “Stress analysis of a complete maxillary denture under various drop impact conditions: a 3D finite element study,” Comput. Methods Biomech. Biomed. Eng., 18, No. 14, 1543-1554 (2015).CrossRef E. Sunbuloglu, “Stress analysis of a complete maxillary denture under various drop impact conditions: a 3D finite element study,” Comput. Methods Biomech. Biomed. Eng., 18, No. 14, 1543-1554 (2015).CrossRef
20.
go back to reference D. I. Grachev, E. A. Chizhmakov, D. Y. Stepanov, D. G. Buslovich, I. V. Khulaev, A. V. Deshev, L. G. Kirakosyan, A. S. Arutyunov, S. Y. Kardanova, K. S. Panin, and S. V. Panin, “Dental materials selection for additive manufacturing of removable complete dentures (RCD),” Int. J. Mol. Sci., 24, 6432 (2023).CrossRefPubMedPubMedCentral D. I. Grachev, E. A. Chizhmakov, D. Y. Stepanov, D. G. Buslovich, I. V. Khulaev, A. V. Deshev, L. G. Kirakosyan, A. S. Arutyunov, S. Y. Kardanova, K. S. Panin, and S. V. Panin, “Dental materials selection for additive manufacturing of removable complete dentures (RCD),” Int. J. Mol. Sci., 24, 6432 (2023).CrossRefPubMedPubMedCentral
21.
go back to reference T, Çaykara, M. G. Sande, N. Azoia, L. R. Rodrigues, and C. J. Silva, “Exploring the potential of polyethylene terephthalate in the design of antibacterial surfaces,” Medical Microbiology and Immunology, 209, No. 33, 363-372 (2020).CrossRefPubMedPubMedCentral T, Çaykara, M. G. Sande, N. Azoia, L. R. Rodrigues, and C. J. Silva, “Exploring the potential of polyethylene terephthalate in the design of antibacterial surfaces,” Medical Microbiology and Immunology, 209, No. 33, 363-372 (2020).CrossRefPubMedPubMedCentral
22.
go back to reference I. Hamanaka, Y. Takahashi, and H. Shimizu, “Mechanical properties of injection-molded thermoplastic denture base resins,” Acta odontologica Scandinavica, 69, No. 2, 75-79 (2011).CrossRefPubMed I. Hamanaka, Y. Takahashi, and H. Shimizu, “Mechanical properties of injection-molded thermoplastic denture base resins,” Acta odontologica Scandinavica, 69, No. 2, 75-79 (2011).CrossRefPubMed
23.
go back to reference M. Kawara, Y. Iwata, M. Iwasaki, Y. Komoda, T. Iida, T. Asano, and O. Komiyama, “Scratch test of thermoplastic denture base resins for non-metal clasp dentures,” J. Prosthodontic Research, 58, No. 11, 35-40 (2014).CrossRef M. Kawara, Y. Iwata, M. Iwasaki, Y. Komoda, T. Iida, T. Asano, and O. Komiyama, “Scratch test of thermoplastic denture base resins for non-metal clasp dentures,” J. Prosthodontic Research, 58, No. 11, 35-40 (2014).CrossRef
24.
go back to reference I. Hamanaka, Y. Takahashi, and H. Shimizu, “Properties of injection-molded thermoplastic polyester denture base resins,” Acta odontologica Scandinavica, 72, No. 2, 139-144 (2014).CrossRefPubMed I. Hamanaka, Y. Takahashi, and H. Shimizu, “Properties of injection-molded thermoplastic polyester denture base resins,” Acta odontologica Scandinavica, 72, No. 2, 139-144 (2014).CrossRefPubMed
25.
go back to reference J. Wada, K. Fueki, M. Yatabe, H. Takahashi, and N. Wakabayashi, “A comparison of the fitting accuracy of thermoplastic denture base resins used in non-metal clasp dentures to a conventional heat-cured acrylic resin,” Acta odontologica Scandinavica., 73, No. 1, 33-37 (2015).CrossRefPubMed J. Wada, K. Fueki, M. Yatabe, H. Takahashi, and N. Wakabayashi, “A comparison of the fitting accuracy of thermoplastic denture base resins used in non-metal clasp dentures to a conventional heat-cured acrylic resin,” Acta odontologica Scandinavica., 73, No. 1, 33-37 (2015).CrossRefPubMed
26.
go back to reference G. Galo Silva, M. L. D. C. Valente, L. Bachmann, and A. C. Dos Reis, “Use of polyethylene terephthalate as a prosthetic component in the prosthesis on an overdenture implant,” Mater. Sci. Eng., C, Mater. for Biological Applications, 99, 1341-1349 (2019). G. Galo Silva, M. L. D. C. Valente, L. Bachmann, and A. C. Dos Reis, “Use of polyethylene terephthalate as a prosthetic component in the prosthesis on an overdenture implant,” Mater. Sci. Eng., C, Mater. for Biological Applications, 99, 1341-1349 (2019).
27.
go back to reference U. R. Darbar, R. Huggett, and A. Harrison, “Stress analysis techniques in complete dentures,” J. Dentistry, 22, No. 5, 259-264 (1994).CrossRef U. R. Darbar, R. Huggett, and A. Harrison, “Stress analysis techniques in complete dentures,” J. Dentistry, 22, No. 5, 259-264 (1994).CrossRef
28.
go back to reference M. A. Mousa, N. Jamayet, E. Lynch, and A. Husein, Biomechanical stress in removable complete dental prostheses: a narrative review of finite element studies, Int. J. Oral Health, 12, No. 5, 413-419 (2020).CrossRef M. A. Mousa, N. Jamayet, E. Lynch, and A. Husein, Biomechanical stress in removable complete dental prostheses: a narrative review of finite element studies, Int. J. Oral Health, 12, No. 5, 413-419 (2020).CrossRef
29.
go back to reference C. Teodorescu, E. Preoteasa, C. T. Preoteasa, C. Murariu-Magureanu, and I. M. Teodorescu, “The biomechanical impact of loss of an implant in the treatment with mandibular overdentures on four nonsplinted mini dental implants: A finite element analysis,” Materials., 15, 8662. (2022).CrossRefPubMedPubMedCentral C. Teodorescu, E. Preoteasa, C. T. Preoteasa, C. Murariu-Magureanu, and I. M. Teodorescu, “The biomechanical impact of loss of an implant in the treatment with mandibular overdentures on four nonsplinted mini dental implants: A finite element analysis,” Materials., 15, 8662. (2022).CrossRefPubMedPubMedCentral
30.
go back to reference Chun-Li Lin, Jen-Chyan Wang, and Yu-Chan Kuo, “Numerical simulation on the biomechanical interactions of tooth/ implant-supported system under various occlusal forces with rigid/non-rigid connections,” J. Biomech., 39, 453-463 (2006).CrossRefPubMed Chun-Li Lin, Jen-Chyan Wang, and Yu-Chan Kuo, “Numerical simulation on the biomechanical interactions of tooth/ implant-supported system under various occlusal forces with rigid/non-rigid connections,” J. Biomech., 39, 453-463 (2006).CrossRefPubMed
31.
go back to reference Selcuk Oruc, Oguz Eraslan, H. Alper Tukay, and Arzu Atay, “Stress analysis of effects of nonrigid connectors on fixed partial dentures with pier abutments,” J. Prosthetic Dentistry., 99, No. 3, 185-192 (2008). Selcuk Oruc, Oguz Eraslan, H. Alper Tukay, and Arzu Atay, “Stress analysis of effects of nonrigid connectors on fixed partial dentures with pier abutments,” J. Prosthetic Dentistry., 99, No. 3, 185-192 (2008).
32.
go back to reference Ramesh Chowdhary, K. Lekha, and N. P. Patil, “Two-dimensional finite element analysis of stresses developed in the supporting tissues under complete dentures using teeth with different cusp angulations,” Gerodontology., 25, 155-161 (2008). Ramesh Chowdhary, K. Lekha, and N. P. Patil, “Two-dimensional finite element analysis of stresses developed in the supporting tissues under complete dentures using teeth with different cusp angulations,” Gerodontology., 25, 155-161 (2008).
33.
go back to reference J. Zmudzki, G. Chladek, and J. Kasperski, “REVIEW ARTICLE Biomechanical factors related to occlusal load transfer in removable complete dentures,” Biomech. Model. Mechanobiol., 14, 679-691 (2015).CrossRefPubMed J. Zmudzki, G. Chladek, and J. Kasperski, “REVIEW ARTICLE Biomechanical factors related to occlusal load transfer in removable complete dentures,” Biomech. Model. Mechanobiol., 14, 679-691 (2015).CrossRefPubMed
34.
go back to reference J. Zmudzki, G. Chladek, and J. Kasperski, “The influence of a complete lower denture destabilization on the pressure of the mucous membrane foundation,” Acta Bioeng Biomech., 14, No. 3, 67-73 (2012).PubMed J. Zmudzki, G. Chladek, and J. Kasperski, “The influence of a complete lower denture destabilization on the pressure of the mucous membrane foundation,” Acta Bioeng Biomech., 14, No. 3, 67-73 (2012).PubMed
35.
go back to reference J. Zmudzki, G. Chladek, and J. Kasperski, REVIEW ARTICLE Biomechanical factors related to occlusal load transfer in removable complete dentures, Biomech. Model. Mechanobiol., 14 (2015). J. Zmudzki, G. Chladek, and J. Kasperski, REVIEW ARTICLE Biomechanical factors related to occlusal load transfer in removable complete dentures, Biomech. Model. Mechanobiol., 14 (2015).
36.
go back to reference R. R. Balokhonov, V. A. Romanova, S. P. Buyakova, A. S. Kulkov, R. A. Bakeev, E. P. Evtushenko, and A. V. Zemlyanov, ”Deformation and fracture behavior of particle-reinforced metal matrix composites and coatings,” Phys. Mesomech., 25, No. 6, 492 (2022). R. R. Balokhonov, V. A. Romanova, S. P. Buyakova, A. S. Kulkov, R. A. Bakeev, E. P. Evtushenko, and A. V. Zemlyanov, ”Deformation and fracture behavior of particle-reinforced metal matrix composites and coatings,” Phys. Mesomech., 25, No. 6, 492 (2022).
37.
go back to reference A. Pegoretti, L. Fambri, G. Zappini, and M. Bianchetti, “Finite element analysis of a glass fibre reinforced composite endodontic post,” Biomaterials., 23, 2667-2682 (2002).CrossRefPubMed A. Pegoretti, L. Fambri, G. Zappini, and M. Bianchetti, “Finite element analysis of a glass fibre reinforced composite endodontic post,” Biomaterials., 23, 2667-2682 (2002).CrossRefPubMed
38.
go back to reference M. Srinivasan, P. Kamnoedboon, G. McKenna, L. Angst, M. Schimmel, M. ¨Ozcan, and F. Müller, “Review article CAD-CAM removable complete dentures: A systematic review and meta-analysis of trueness of fit, biocompatibility, mechanical properties, surface characteristics, color stability, time-cost analysis, clinical and patient-reported outcomes,” J. Dentistry, 113, 103777 (2021). M. Srinivasan, P. Kamnoedboon, G. McKenna, L. Angst, M. Schimmel, M. ¨Ozcan, and F. Müller, “Review article CAD-CAM removable complete dentures: A systematic review and meta-analysis of trueness of fit, biocompatibility, mechanical properties, surface characteristics, color stability, time-cost analysis, clinical and patient-reported outcomes,” J. Dentistry, 113, 103777 (2021).
39.
go back to reference C. Bural, Biomechanics of Removable Partial Dentures. In: Şakar, O. (eds) Removable Partial Dentures. Springer, Cham (2016). C. Bural, Biomechanics of Removable Partial Dentures. In: Şakar, O. (eds) Removable Partial Dentures. Springer, Cham (2016).
40.
go back to reference J. Kasperski, J. Zmudzki, and G. Chladek, “Denture foundation tissues loading criteria in evaluation of dentures wearing characteristics,” J. Achiev. Mater. Manuf. Eng., 43, No. 1, 324-332 (2010). J. Kasperski, J. Zmudzki, and G. Chladek, “Denture foundation tissues loading criteria in evaluation of dentures wearing characteristics,” J. Achiev. Mater. Manuf. Eng., 43, No. 1, 324-332 (2010).
41.
go back to reference M. Ates, A. Cilingir, T. Sülün, E. Sünbülo˘glu, and E. Bozda, “The effect of occlusal contact localization on the stress distribution in complete maxillary denture,” J. Oral Rehabil., 33, No. 7, 509-513 (2006). M. Ates, A. Cilingir, T. Sülün, E. Sünbülo˘glu, and E. Bozda, “The effect of occlusal contact localization on the stress distribution in complete maxillary denture,” J. Oral Rehabil., 33, No. 7, 509-513 (2006).
42.
go back to reference Y. L. Lü, H. D. Lou, Q. G. Rong, J. Dong, and J. Xu, “Stress area of the mandibular alveolar mucosa under complete denture with linear occlusion at lateral excursion,” Chin Med J., 123, No. 7, 917-921 (2010).PubMed Y. L. Lü, H. D. Lou, Q. G. Rong, J. Dong, and J. Xu, “Stress area of the mandibular alveolar mucosa under complete denture with linear occlusion at lateral excursion,” Chin Med J., 123, No. 7, 917-921 (2010).PubMed
43.
go back to reference Y. Takayama, T. Yamada, O. Araki, T. Seki, and T. Kawasaki, “The dynamic behaviour of a lower complete denture during unilateral loads: analysis using the finite element method,” J. Oral Rehabil., 28, No. 11, 1064-1074 (2001).CrossRefPubMed Y. Takayama, T. Yamada, O. Araki, T. Seki, and T. Kawasaki, “The dynamic behaviour of a lower complete denture during unilateral loads: analysis using the finite element method,” J. Oral Rehabil., 28, No. 11, 1064-1074 (2001).CrossRefPubMed
44.
go back to reference T. Kawasaki, Y. Takayama, T. Yamada, and K. Notani, “Relationship between the stress distribution and the shape of the alveolar residual ridge-three-dimensional behaviour of a lower complete denture,” J. Oral Rehabil., 28, No. 10, 950-957 (2001).PubMed T. Kawasaki, Y. Takayama, T. Yamada, and K. Notani, “Relationship between the stress distribution and the shape of the alveolar residual ridge-three-dimensional behaviour of a lower complete denture,” J. Oral Rehabil., 28, No. 10, 950-957 (2001).PubMed
45.
go back to reference M. Tanaka, T. Ogimoto, K. Koyano, and T. Ogawa, “Denture wearing and strong bite force reduce pressure pain threshold of edentulous oral mucosa,” J. Oral Rehabil., 31, No. 9, 873-878 (2004).CrossRefPubMed M. Tanaka, T. Ogimoto, K. Koyano, and T. Ogawa, “Denture wearing and strong bite force reduce pressure pain threshold of edentulous oral mucosa,” J. Oral Rehabil., 31, No. 9, 873-878 (2004).CrossRefPubMed
46.
go back to reference T. Ogawa, M. Tanaka, T. Ogimoto, N. Okushi, K. Koyano, and K. Takeuchi, “Mapping, profiling and clustering of pressure pain threshold (PPT) in edentulous oral mucosa,” J. Dent., 32, 219-228 (2004).CrossRefPubMed T. Ogawa, M. Tanaka, T. Ogimoto, N. Okushi, K. Koyano, and K. Takeuchi, “Mapping, profiling and clustering of pressure pain threshold (PPT) in edentulous oral mucosa,” J. Dent., 32, 219-228 (2004).CrossRefPubMed
47.
go back to reference E. A. Chizhmakov, E. G. Zherebtsov, M. A. Galankina, and A. S. Arutyunov, “Immediate denture with printed polymethylmethacrylate dentition and polyethylene terephthalate denture base: a clinical case,” Clinical Dentistry., 26, No. 3, 100-109, (2023). E. A. Chizhmakov, E. G. Zherebtsov, M. A. Galankina, and A. S. Arutyunov, “Immediate denture with printed polymethylmethacrylate dentition and polyethylene terephthalate denture base: a clinical case,” Clinical Dentistry., 26, No. 3, 100-109, (2023).
48.
go back to reference S. S. Pertsov, G. M. Styureva, S. A. Muslov, A. A. Sinitsyn, A. A. Korneev, N. and V. Zaitseva, Fundamentals of Biomechanics for Dentists. A Tutorial for Students of Dental Faculties, Dental Interns, Residents and Students of Postgraduate Education Faculties of Medical Universities, MGMSU, Moscow (2017). S. S. Pertsov, G. M. Styureva, S. A. Muslov, A. A. Sinitsyn, A. A. Korneev, N. and V. Zaitseva, Fundamentals of Biomechanics for Dentists. A Tutorial for Students of Dental Faculties, Dental Interns, Residents and Students of Postgraduate Education Faculties of Medical Universities, MGMSU, Moscow (2017).
49.
go back to reference A. A. Boldyreva, Y. A. Yarunicheva, A. V. Dernakova, and I. V. Ivashov, “Strength of a polymer composite (fiberglass) under interlayer shear [in Russian],” Eng. and Construction J., 62, No. 2, 42-50 (2016). A. A. Boldyreva, Y. A. Yarunicheva, A. V. Dernakova, and I. V. Ivashov, “Strength of a polymer composite (fiberglass) under interlayer shear [in Russian],” Eng. and Construction J., 62, No. 2, 42-50 (2016).
50.
go back to reference D. Grachev, I. Zolotnitsky, D. Stepanov, A. Kozulin, M. Mustafaev, A. Deshev, D. Arutyunov, I. Tlupov, S. Panin, and S. Arutyunov, “Ranking technologies of additive manufacturing of removable complete dentures (RCD) by the results of their mechanical testing,” Dentistry J. (2023) (accepted). D. Grachev, I. Zolotnitsky, D. Stepanov, A. Kozulin, M. Mustafaev, A. Deshev, D. Arutyunov, I. Tlupov, S. Panin, and S. Arutyunov, “Ranking technologies of additive manufacturing of removable complete dentures (RCD) by the results of their mechanical testing,” Dentistry J. (2023) (accepted).
51.
go back to reference L. G. Kirakosyan, Comparative Clinical-Microbiological and Mechanical-Mathematical Analysis of the Effectiveness of Printed Polymer Prototype Prostheses, Master’s thesis, A. I. Yevdokimov MSMSU, Moscow (2023). L. G. Kirakosyan, Comparative Clinical-Microbiological and Mechanical-Mathematical Analysis of the Effectiveness of Printed Polymer Prototype Prostheses, Master’s thesis, A. I. Yevdokimov MSMSU, Moscow (2023).
52.
go back to reference S. D. Arutyunov, D. I. Grachev, G. G. Bagdasaryan, V. N. Nikitin, N. V. Maksimova, and A. D. Nikitin, “Mathematical modelling of biomechanical behaviour of the removable dental prosthesis basis under the characteristic chewing loads,” Russian J. Biomechanics, 24, No. 4, 420-431 (2020).CrossRef S. D. Arutyunov, D. I. Grachev, G. G. Bagdasaryan, V. N. Nikitin, N. V. Maksimova, and A. D. Nikitin, “Mathematical modelling of biomechanical behaviour of the removable dental prosthesis basis under the characteristic chewing loads,” Russian J. Biomechanics, 24, No. 4, 420-431 (2020).CrossRef
Metadata
Title
Application of Polyethylene Terephthalate as a Denture Base Material for Manufacturing Temporary Removable Complete Dentures
Authors
E. A. Chizhmakov
A. S. Arutyunov
S. A. Muslov
S. A. Bochkareva
I. L. Panov
G. D. Akhmedov
D. G. Buslovich
S. V. Panin
S. D. Arutyunov
Publication date
27-04-2024
Publisher
Springer US
Published in
Mechanics of Composite Materials / Issue 2/2024
Print ISSN: 0191-5665
Electronic ISSN: 1573-8922
DOI
https://doi.org/10.1007/s11029-024-10186-2

Other articles of this Issue 2/2024

Mechanics of Composite Materials 2/2024 Go to the issue

Premium Partners