Skip to main content
Top
Published in: Thermal Engineering 12/2023

01-12-2023 | NUCLEAR POWER PLANTS

Application of the EUCLID Integrated Code’s HYDRA-IBRAE/LM Thermal Hydraulic Module for Analyzing the Steam Generators of Sodium Cooled Reactor Plants

Authors: I. A. Klimonov, N. A. Mosunova, V. F. Strizhov, E. V. Usov, V. I. Chukhno

Published in: Thermal Engineering | Issue 12/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract—

Application of computation tools resting on contemporary physical and mathematical models for substantiating the design solutions adopted for various heat-transfer equipment components helps save time, manpower, and financial resources of design institutions. The variety of both existing reactors and those being designed, which differ from one another both in design and type of coolants calls for the availability of a versatile thermal hydraulic computer code suited for a wide range of applications. The new-generation HYDRA-IBRAE/LM thermal hydraulic module of the EUCLID integrated code, which has been developed as part of the Proryv (Breakthrough) Project, meets these requirements. The operation of this thermal hydraulic module as part of the integrated code opens the possibility to simulate an essentially wider range of reactor plant operation modes and, as a consequence, those of individual heat-transfer equipment components. The developed thermal hydraulic module, which has been certified at the Scientific and Engineering Center for Nuclear and Radiation Safety (SEC NRS), offers the possibility to analyze the thermal hydraulics of sodium, lead, lead–bismuth, gas, and water coolants in various NPP equipment items. Reactor plant steam generators (SGs) belong to the category of equipment components most complex for modeling since they may contain two types of coolants. The article presents study results demonstrating the code’s abilities to analyze in a correct way the processes in the steam generators of only sodium cooled reactor plants, because these plants exist and are actively operated in Russia and around the world. The data presented in the article allow a conclusion to be drawn that the thermal hydraulic module developed at IBRAE RAS is an efficient tool for numerically analyzing complex heat-transfer processes in reactor plants. By using an extended system of closing correlations implemented in the module, it is possible to perform substantiation of design thermal engineering solutions as applied to individual heat-transfer equipment components.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference V. M. Alipchenkov, A. M. Anfimov, D. A. Afremov, V. S. Gorbunov, Yu. A. Zeigarnik, A. V. Kudryavtsev, S. L. Osipov, N. A. Mosunova, V. F. Strizhov, and E. V. Usov, “Fundamentals, current state of the development of, and prospects for further improvement of the new-generation thermal-hydraulic computational HYDRA-IBRAE/LM code for simulation of fast reactor systems,” Therm. Eng. 63, 130–139 (2016). https://doi.org/10.1134/S0040601516020014CrossRef V. M. Alipchenkov, A. M. Anfimov, D. A. Afremov, V. S. Gorbunov, Yu. A. Zeigarnik, A. V. Kudryavtsev, S. L. Osipov, N. A. Mosunova, V. F. Strizhov, and E. V. Usov, “Fundamentals, current state of the development of, and prospects for further improvement of the new-generation thermal-hydraulic computational HYDRA-IBRAE/LM code for simulation of fast reactor systems,” Therm. Eng. 63, 130–139 (2016). https://​doi.​org/​10.​1134/​S004060151602001​4CrossRef
2.
go back to reference E. V. Usov, A. A. Butov, G. A. Dugarov, I. G. Kudashov, S. I. Lezhnin, N. A. Mosunova, and N. A. Pribaturin, “System of closing relations of a two-fluid model for the HYDRA-IBRAE/LM/V1 code for calculation of sodium boiling in channels of power equipment,” Therm. Eng. 64, 504–510 (2017). https://doi.org/10.1134/S0040601517070102CrossRef E. V. Usov, A. A. Butov, G. A. Dugarov, I. G. Kudashov, S. I. Lezhnin, N. A. Mosunova, and N. A. Pribaturin, “System of closing relations of a two-fluid model for the HYDRA-IBRAE/LM/V1 code for calculation of sodium boiling in channels of power equipment,” Therm. Eng. 64, 504–510 (2017). https://​doi.​org/​10.​1134/​S004060151707010​2CrossRef
3.
go back to reference A. A. Butov, V. S. Zhdanov, I. A. Klimonov, I. G. Kudashov, A. E. Kutlimetov, N. A. Mosunova, V. F. Strizhov, A. A. Sorokin, S. A. Frolov, E. V. Usov, and V. I. Chukhno, “The EUCLID/V2 code physical models for calculating fuel rod and core failures in a liquid metal cooled reactor,” Therm. Eng. 66, 293–301 (2019). https://doi.org/10.1134/S0040601519050021CrossRef A. A. Butov, V. S. Zhdanov, I. A. Klimonov, I. G. Kudashov, A. E. Kutlimetov, N. A. Mosunova, V. F. Strizhov, A. A. Sorokin, S. A. Frolov, E. V. Usov, and V. I. Chukhno, “The EUCLID/V2 code physical models for calculating fuel rod and core failures in a liquid metal cooled reactor,” Therm. Eng. 66, 293–301 (2019). https://​doi.​org/​10.​1134/​S004060151905002​1CrossRef
4.
go back to reference R. I. Nigmatulin, Dynamics of Multiphase Media (Nauka, Moscow, 1987; Hemisphere, New York, 1991), Vol. 1. R. I. Nigmatulin, Dynamics of Multiphase Media (Nauka, Moscow, 1987; Hemisphere, New York, 1991), Vol. 1.
5.
go back to reference E. V. Usov, N. A. Pribaturin, I. G. Kudashov, A. A. Butov, G. A. Dugarov, N. A. Mosunova, V. F. Strizhov, and E. N. Ivanov, “A step in the verification of the Hydra-Ibrae/LM/V1 thermohydraulic code for calculating sodium coolant flow in fuel-rod assemblies,” At. Energy 118, 382–388 (2015).CrossRef E. V. Usov, N. A. Pribaturin, I. G. Kudashov, A. A. Butov, G. A. Dugarov, N. A. Mosunova, V. F. Strizhov, and E. N. Ivanov, “A step in the verification of the Hydra-Ibrae/LM/V1 thermohydraulic code for calculating sodium coolant flow in fuel-rod assemblies,” At. Energy 118, 382–388 (2015).CrossRef
6.
go back to reference I. G. Kudashov, E. V. Usov, A. A. Butov, I. S. Vozhakov, N. A. Pribaturin, S. I. Lezhnin, M. E. Kuznetsova, Yu. Yu. Vinogradova, R. V. Chalyi, V. N. Semenov, A. L. Fokin, and N. I. Ryzhov, “Heat-exchange models in the SOKRAT-BN code for calculating sodium boiling in geometrically different channels,” At. Energy 117, 323–328 (2014).CrossRef I. G. Kudashov, E. V. Usov, A. A. Butov, I. S. Vozhakov, N. A. Pribaturin, S. I. Lezhnin, M. E. Kuznetsova, Yu. Yu. Vinogradova, R. V. Chalyi, V. N. Semenov, A. L. Fokin, and N. I. Ryzhov, “Heat-exchange models in the SOKRAT-BN code for calculating sodium boiling in geometrically different channels,” At. Energy 117, 323–328 (2014).CrossRef
7.
go back to reference V. I. Subbotin, M. Kh. Ibragimov, and P. A. Ushakov, Hydrodynamics and Heat Transfer in Nuclear Power Facilities (Fundamentals of Calculation) (Atomizdat, Moscow, 1975) [in Russian]. V. I. Subbotin, M. Kh. Ibragimov, and P. A. Ushakov, Hydrodynamics and Heat Transfer in Nuclear Power Facilities (Fundamentals of Calculation) (Atomizdat, Moscow, 1975) [in Russian].
8.
go back to reference Handbook of Hydrodynamical Calculations in Nuclear Power Engineering, Vol. 1: Thermohydraulic Processes in Nuclear Power Facilities, Ed. by P. L. Kirillov (IzdAt, Moscow, 2010) [in Russian]. Handbook of Hydrodynamical Calculations in Nuclear Power Engineering, Vol. 1: Thermohydraulic Processes in Nuclear Power Facilities, Ed. by P. L. Kirillov (IzdAt, Moscow, 2010) [in Russian].
9.
go back to reference Yu. V. Yudov, S. N. Volkova, and Yu. A. Migrov, “The closing relationships of the thermohydraulic model of the KORSAR computer code,” Therm. Eng. 49, 901–908 (2002). Yu. V. Yudov, S. N. Volkova, and Yu. A. Migrov, “The closing relationships of the thermohydraulic model of the KORSAR computer code,” Therm. Eng. 49, 901–908 (2002).
10.
go back to reference J. W. Spore, J. S. Elson, S. J. Jolly-Woodruff, T. D. Knight, J.-C. Lin, R. A. Nelson, K. O. Pasamehmetoglu, R. G. Steinke, and C. Unal, TRAC-M/FORTRAN 90 (VERSION 3.0) LA-UR-00-910. Theory Manual (Los Alamos National Laboratory, 2000). J. W. Spore, J. S. Elson, S. J. Jolly-Woodruff, T. D. Knight, J.-C. Lin, R. A. Nelson, K. O. Pasamehmetoglu, R. G. Steinke, and C. Unal, TRAC-M/FORTRAN 90 (VERSION 3.0) LA-UR-00-910. Theory Manual (Los Alamos National Laboratory, 2000).
11.
go back to reference P. L. Kirillov, N. M. Turchin, and N. S. Grachev, Studies of Heat Transfer on Single Tube Models of BN-350 Evaporator (Fiz.-Energ. Inst. im. A. I. Leipunskogo, Obninsk, 1984) [in Russian]. P. L. Kirillov, N. M. Turchin, and N. S. Grachev, Studies of Heat Transfer on Single Tube Models of BN-350 Evaporator (Fiz.-Energ. Inst. im. A. I. Leipunskogo, Obninsk, 1984) [in Russian].
12.
go back to reference A. M. Anfimov, V. S. Gorbunov, D. V. Kuznetsov, V. S. Osipov, E. N. Ivanov, I. A. Klimonov, I. G. Kudashov, N. A. Mosunova, and E. V. Usov, “Main results of HYDRA-IBRAE/LM/V1 code verification during BN-600 RP experimental modes,” Vopr. At. Nauki Tekh., Ser.: Yad.-Reakt. Konst., No. 4, 182–190 (2016). A. M. Anfimov, V. S. Gorbunov, D. V. Kuznetsov, V. S. Osipov, E. N. Ivanov, I. A. Klimonov, I. G. Kudashov, N. A. Mosunova, and E. V. Usov, “Main results of HYDRA-IBRAE/LM/V1 code verification during BN-600 RP experimental modes,” Vopr. At. Nauki Tekh., Ser.: Yad.-Reakt. Konst., No. 4, 182–190 (2016).
13.
go back to reference I. V. Klimonov, E. V. Usov, G. A. Dugarov, A. A. Butov, I. G. Kudashov, E. N. Ivanov, N. A. Mosunova, V. F. Strizhov, A. M. Anfimov, V. S. Gorbunov, D. V. Kuznetsov, S. L. Osipov, and A. I. Bel’tyukov, “HYDRA-IBRAE/LM/V1 thermohydraulic code verification based on BN-600 experiments,” At. Energy 122, 311–318 (2017).CrossRef I. V. Klimonov, E. V. Usov, G. A. Dugarov, A. A. Butov, I. G. Kudashov, E. N. Ivanov, N. A. Mosunova, V. F. Strizhov, A. M. Anfimov, V. S. Gorbunov, D. V. Kuznetsov, S. L. Osipov, and A. I. Bel’tyukov, “HYDRA-IBRAE/LM/V1 thermohydraulic code verification based on BN-600 experiments,” At. Energy 122, 311–318 (2017).CrossRef
Metadata
Title
Application of the EUCLID Integrated Code’s HYDRA-IBRAE/LM Thermal Hydraulic Module for Analyzing the Steam Generators of Sodium Cooled Reactor Plants
Authors
I. A. Klimonov
N. A. Mosunova
V. F. Strizhov
E. V. Usov
V. I. Chukhno
Publication date
01-12-2023
Publisher
Pleiades Publishing
Published in
Thermal Engineering / Issue 12/2023
Print ISSN: 0040-6015
Electronic ISSN: 1555-6301
DOI
https://doi.org/10.1134/S0040601523120054

Other articles of this Issue 12/2023

Thermal Engineering 12/2023 Go to the issue

STEAM-TURBINE, GAS-TURBINE, AND COMBINED-CYCLE PLANTS AND THEIR AUXILIARY EQUIPMENT

Selecting the Startup Option for the Surgut GRES-2 800-MW Power Unit in the Absence of Its Own Steam Source

Premium Partner