Skip to main content
Top
Published in: Cellulose 6/2017

27-03-2017 | Original Paper

Applying Direct Yellow 11 to a modified Simons’ staining assay

Authors: Thomas T. Kwok, David N. Fogg Jr., Matthew J. Realff, Andreas S. Bommarius

Published in: Cellulose | Issue 6/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

For quantification of overall fiber accessibility of lignocellulosic substrates, Direct Yellow 11 (C.I. 40000) is a suitable alternative to the discontinued Pylam Products’ dye Direct Orange 15 (C.I. 40002/40003). In this study we present a side-by-side comparison between the two azo-stilbene dyes. We characterize individual dye fractions and provide equations to determine individual concentrations. We present a modified Simons’ staining protocol incorporating the high molecular weight fraction of Direct Yellow 11. We perform tests on lignin, cellulosic, and lignocellulosic materials. In all tests, the two dyes perform similarly and satisfy many accessibility measurement criteria. We demonstrate that the adsorption of Direct Yellow 11 onto a substrate correlates with that substrate’s propensity for enzymatic hydrolysis. We confirm this correlation on a series of organic solvent pretreatments and on a series of lignocellulosic substrates. Finally, we outline the inherent limitations of performing adsorption experiments with Direct Yellow 11 and other high molecular weight dyes.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
go back to reference Abuja PM, Schmuck M, Pilz I, Tomme P, Claeyssens M, Esterbauer H (1988) Structural and functional domains of cellobiohydrolase I from Trichoderma reesei. Eur Biophys J 15(6):339–342CrossRef Abuja PM, Schmuck M, Pilz I, Tomme P, Claeyssens M, Esterbauer H (1988) Structural and functional domains of cellobiohydrolase I from Trichoderma reesei. Eur Biophys J 15(6):339–342CrossRef
go back to reference Chandra RP, Saddler JN (2012) Use of the Simons’ staining technique to assess cellulose accessibility in pretreated substrates. Ind Biotechnol 8(4):230–237CrossRef Chandra RP, Saddler JN (2012) Use of the Simons’ staining technique to assess cellulose accessibility in pretreated substrates. Ind Biotechnol 8(4):230–237CrossRef
go back to reference Chandra RP, Ewanick S, Hsieh C, Saddler JN (2008) The characterization of pretreated lignocellulosic substrates prior to enzymatic hydrolysis, part 1: a modified Simons’ staining technique. Biotechnol Prog 24(5):1178–1185CrossRef Chandra RP, Ewanick S, Hsieh C, Saddler JN (2008) The characterization of pretreated lignocellulosic substrates prior to enzymatic hydrolysis, part 1: a modified Simons’ staining technique. Biotechnol Prog 24(5):1178–1185CrossRef
go back to reference Chandra RP, Arantes V, Saddler JN (2015) Steam pretreatment of agricultural residues facilitates hemicellulose recovery while enhancing enzyme accessibility to cellulose. Bioresour Technol 185:302–307CrossRef Chandra RP, Arantes V, Saddler JN (2015) Steam pretreatment of agricultural residues facilitates hemicellulose recovery while enhancing enzyme accessibility to cellulose. Bioresour Technol 185:302–307CrossRef
go back to reference Chen Y, Wang Y, Wan J, Ma Y (2010) Crystal and pore structure of wheat straw cellulose fiber during recycling. Cellulose 17(2):329–338CrossRef Chen Y, Wang Y, Wan J, Ma Y (2010) Crystal and pore structure of wheat straw cellulose fiber during recycling. Cellulose 17(2):329–338CrossRef
go back to reference Gourlay K, Arantes V, Saddler JN (2012) Use of substructure-specific carbohydrate binding modules to track changes in cellulose accessibility and surface morphology during the amorphogenesis step of enzymatic hydrolysis. Biotechnol Biofuels 5:51CrossRef Gourlay K, Arantes V, Saddler JN (2012) Use of substructure-specific carbohydrate binding modules to track changes in cellulose accessibility and surface morphology during the amorphogenesis step of enzymatic hydrolysis. Biotechnol Biofuels 5:51CrossRef
go back to reference Hall M, Bansal P, Lee JH, Realff MJ, Bommarius AS (2010) Cellulose crystallinity–a key predictor of the enzymatic hydrolysis rate. FEBS J 277(6):1571–1582CrossRef Hall M, Bansal P, Lee JH, Realff MJ, Bommarius AS (2010) Cellulose crystallinity–a key predictor of the enzymatic hydrolysis rate. FEBS J 277(6):1571–1582CrossRef
go back to reference Inglesby MK, Zeronian SH (1996) The accessibility of cellulose as determined by dye adsorption. Cellulose 3(1):165–181CrossRef Inglesby MK, Zeronian SH (1996) The accessibility of cellulose as determined by dye adsorption. Cellulose 3(1):165–181CrossRef
go back to reference Luo Z, Zhu JY (2011) Effects of drying-induced fiber hornification on enzymatic saccharification of lignocelluloses. Enzyme Microb Technol 48(1):92–99CrossRef Luo Z, Zhu JY (2011) Effects of drying-induced fiber hornification on enzymatic saccharification of lignocelluloses. Enzyme Microb Technol 48(1):92–99CrossRef
go back to reference Meng X, Ragauskas AJ (2014) Recent advances in understanding the role of cellulose accessibility in enzymatic hydrolysis of lignocellulosic substrates. Curr Opin Biotechnol 27:150–158CrossRef Meng X, Ragauskas AJ (2014) Recent advances in understanding the role of cellulose accessibility in enzymatic hydrolysis of lignocellulosic substrates. Curr Opin Biotechnol 27:150–158CrossRef
go back to reference Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31(3):426–428CrossRef Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31(3):426–428CrossRef
go back to reference Novozymes A/S (2010) Cellic® CTec2 and HTec2-enzymes for hydrolysis of lignocellulosic materials, Applications Report No. 2010-01668-01. Novozymes, Bagsvaerd Novozymes A/S (2010) Cellic® CTec2 and HTec2-enzymes for hydrolysis of lignocellulosic materials, Applications Report No. 2010-01668-01. Novozymes, Bagsvaerd
go back to reference Shuai L, Luterbacher J (2016) Organic solvent effects in biomass conversion reactions. ChemSusChem 9(2):133–155CrossRef Shuai L, Luterbacher J (2016) Organic solvent effects in biomass conversion reactions. ChemSusChem 9(2):133–155CrossRef
go back to reference Simitzis J, Sfyrakis J, Faliagas A (1995) Characterization of pore structure by porosimetry and sorption on adsorbents produced from novolac-biomass. Mater Chem Phys 41(4):245–250CrossRef Simitzis J, Sfyrakis J, Faliagas A (1995) Characterization of pore structure by porosimetry and sorption on adsorbents produced from novolac-biomass. Mater Chem Phys 41(4):245–250CrossRef
go back to reference Simons FL (1950) A stain for use in the microscopy of beaten fibers. TAPPI 33(7):312–314 Simons FL (1950) A stain for use in the microscopy of beaten fibers. TAPPI 33(7):312–314
go back to reference Stone JE, Scallian AM (1969) Digestibility as a simple function of a molecule of a similar size to a cellulase enzyme. Adv Chem Ser 95:219–224CrossRef Stone JE, Scallian AM (1969) Digestibility as a simple function of a molecule of a similar size to a cellulase enzyme. Adv Chem Ser 95:219–224CrossRef
go back to reference TAPPI useful method UM256 (1981) Water retention value (WRV). TAPPI useful methods. TAPPI Press, Atlanta TAPPI useful method UM256 (1981) Water retention value (WRV). TAPPI useful methods. TAPPI Press, Atlanta
go back to reference Wang QQ, He Z, Zhu Z, Zhang YH, Ni Y, Luo XL, Zhu JY (2012) Evaluations of cellulose accessibilities of lignocelluloses by solute exclusion and protein adsorption techniques. Biotechnol Bioeng 109(2):381–389CrossRef Wang QQ, He Z, Zhu Z, Zhang YH, Ni Y, Luo XL, Zhu JY (2012) Evaluations of cellulose accessibilities of lignocelluloses by solute exclusion and protein adsorption techniques. Biotechnol Bioeng 109(2):381–389CrossRef
go back to reference White AR, Brown RM (1981) Enzymatic hydrolysis of cellulose: visual characterization of the process. Proc Natl Acad Sci 78(2):1047–1051CrossRef White AR, Brown RM (1981) Enzymatic hydrolysis of cellulose: visual characterization of the process. Proc Natl Acad Sci 78(2):1047–1051CrossRef
go back to reference Yu X, Minor JL, Atalla R (1995) Mechanism of action of Simons’ stain. Tappi J 78:175–180 Yu X, Minor JL, Atalla R (1995) Mechanism of action of Simons’ stain. Tappi J 78:175–180
go back to reference Zhang Z, Vancov T, Mackintosh S, Basu B, Lali A, Qian G, Hobson P, Doherty WO (2016) Assessing dilute acid pretreatment of different lignocellulosic biomasses for enhanced sugar production. Cellulose 23(6):3771–3783CrossRef Zhang Z, Vancov T, Mackintosh S, Basu B, Lali A, Qian G, Hobson P, Doherty WO (2016) Assessing dilute acid pretreatment of different lignocellulosic biomasses for enhanced sugar production. Cellulose 23(6):3771–3783CrossRef
go back to reference Zhao X, Zhang L, Liu D (2012) Biomass recalcitrance. Part I: the chemical compositions and physical structures affecting the enzymatic hydrolysis of lignocellulose. Biofuels Bioprod Biorefin 6(4):465–482CrossRef Zhao X, Zhang L, Liu D (2012) Biomass recalcitrance. Part I: the chemical compositions and physical structures affecting the enzymatic hydrolysis of lignocellulose. Biofuels Bioprod Biorefin 6(4):465–482CrossRef
Metadata
Title
Applying Direct Yellow 11 to a modified Simons’ staining assay
Authors
Thomas T. Kwok
David N. Fogg Jr.
Matthew J. Realff
Andreas S. Bommarius
Publication date
27-03-2017
Publisher
Springer Netherlands
Published in
Cellulose / Issue 6/2017
Print ISSN: 0969-0239
Electronic ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-017-1269-y

Other articles of this Issue 6/2017

Cellulose 6/2017 Go to the issue