Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

29-11-2021 | Research Article-Computer Engineering and Computer Science

Arabic and Latin Scene Text Recognition by Combining Handcrafted and Deep-Learned Features

Journal:
Arabian Journal for Science and Engineering
Authors:
Maroua Tounsi, Ikram Moalla, Umapada Pal, Adel M. Alimi

Abstract

Recognizing text within camera-captured images has been a very significant research topic for the last decades. In this paper, we intend to recognize Latin/Arabic text in natural scenes. For this reason, we present a comparative study between handcrafted and hybrid features. To acquire handcrafted features, we employ a standard bag of features (BoF) model based on a variant of the dense scale-invariant feature transform (SIFT) features. However, hybrid features are obtained by combining handcrafted features with deep-learned features using deep sparse auto-encoder (SAE). Indeed, an SAE-based method is applied in the local feature learning step to enhance discriminative as well as representative abilities of character image features. In the recognition step, we use hidden Markov model (HMM) with the aim of constructing a hybrid BoF-SAE-HMM architecture. We extensively evaluate our system upon various cropped word datasets of Arabic as well as Latin script. Using handcrafted features, the mean recognition accuracy obtained is 70.5 % for Arabic and 82.3 % for Latin script. Using hybrid features, we reached a mean recognition accuracy of 79.2 % and 91.7 % for Arabic and Latin scripts, respectively. Hence, combination of deep-learned features with handcrafted features leads to a considerable improvement of the recognition accuracy.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Premium Partners

    Image Credits