Skip to main content
Top
Published in: Cognitive Computation 6/2023

18-07-2023

AS-3DFCN: Automatically Seeking 3DFCN-Based Brain Tumor Segmentation

Authors: Ruihua Liu, Haoyu Nan, Yangyang Zou, Ting Xie

Published in: Cognitive Computation | Issue 6/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Convolutional neural network, an optimization technique inspired by biological visual cortex, is widely used in pattern recognition, information processing, and other fields, and it has a good ability to solve nonlinear problems. However, there are some disadvantages, such as its uninterpretability, high computational cost, and GPU consumption, which make its structural design difficult. As a result, the existing neural networks require manual design by experts, and numerous experiments have been conducted to assess their effectiveness. In order to reduce the difficulty of designing neural networks manually, and to design more effective networks to solve problems, we propose a model for automatically seeking 3D fully convolutional network (AS-3DFCN) based on genetic algorithm. Firstly, we suggest an AS-3DFCN that defines the search space as a directed graph. Secondly, in order to improve the segmentation accuracy of our model for brain tumor images, the genetic algorithm is applied to search an ideal topology network. Finally, we evaluate the effectiveness of our proposed algorithm using the MICCAI-BraTS2018-2020 public datasets. After comparing with other manually designed fully convolutional networks, our method outperforms many other advanced methods, with average Dice coefficients of 84.7, 83.1, and 83.3; average Hausdorff measures of 4.32, 4.88, and 13.5; and parameter quantities of only 5.34M. It has also shown that our model has fewer parameters, can automatically seek the optimum network topology, and can segment brain tumor images more accurately.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathological. 2007;114(2):97–109.CrossRef Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathological. 2007;114(2):97–109.CrossRef
2.
go back to reference Kaur T, Saini BS, Gupta S. A novel fully automatic multilevel thresholding technique based on optimized intuitionistic fuzzy sets and tsallis entropy for MR brain tumor image segmentation. Australas Phys Eng Sci Med. 2018;41(1):41–58.CrossRef Kaur T, Saini BS, Gupta S. A novel fully automatic multilevel thresholding technique based on optimized intuitionistic fuzzy sets and tsallis entropy for MR brain tumor image segmentation. Australas Phys Eng Sci Med. 2018;41(1):41–58.CrossRef
3.
go back to reference Lei X, Yu X, Chi J, Wang Y, Zhang J, Wu C. Brain tumor segmentation in MR images using a sparse constrained level set algorithm. Expert Syst Appl. 2021;168:114262.CrossRef Lei X, Yu X, Chi J, Wang Y, Zhang J, Wu C. Brain tumor segmentation in MR images using a sparse constrained level set algorithm. Expert Syst Appl. 2021;168:114262.CrossRef
4.
go back to reference Sheela C, Suganthi G. Morphological edge detection and brain tumor segmentation in magnetic resonance (MR) images based on region growing and performance evaluation of modified Fuzzy C-Means (FCM) algorithm. Multimed Tools Appl. 2020;79(25):17483–96.CrossRef Sheela C, Suganthi G. Morphological edge detection and brain tumor segmentation in magnetic resonance (MR) images based on region growing and performance evaluation of modified Fuzzy C-Means (FCM) algorithm. Multimed Tools Appl. 2020;79(25):17483–96.CrossRef
5.
go back to reference Siciarz P, McCurdy B. U-net architecture with embedded Inception-ResNet-v2 image encoding modules for automatic segmentation of organs-at-risk in head and neck cancer radiation therapy based on computed tomography scans. Phys Med Biol. 2022;67(11):115007.CrossRef Siciarz P, McCurdy B. U-net architecture with embedded Inception-ResNet-v2 image encoding modules for automatic segmentation of organs-at-risk in head and neck cancer radiation therapy based on computed tomography scans. Phys Med Biol. 2022;67(11):115007.CrossRef
6.
go back to reference Ke L, Deng Y, Xia W, Qiang M, Chen X, Liu K, et al. Development of a self-constrained 3D DenseNet model in automatic detection and segmentation of nasopharyngeal carcinoma using magnetic resonance images. Oral Oncol. 2020;110:104862.CrossRef Ke L, Deng Y, Xia W, Qiang M, Chen X, Liu K, et al. Development of a self-constrained 3D DenseNet model in automatic detection and segmentation of nasopharyngeal carcinoma using magnetic resonance images. Oral Oncol. 2020;110:104862.CrossRef
7.
go back to reference Shelhamer E, Long J, Darrell T. Fully convolutional networks for semantic segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(04):640–51.CrossRef Shelhamer E, Long J, Darrell T. Fully convolutional networks for semantic segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(04):640–51.CrossRef
8.
go back to reference Tie J, Peng H, Zhou J. MRI brain tumor segmentation using 3D U-Net with dense encoder blocks and residual decoder blocks. Comput Model Eng Sci. 2021;128(2):427–45. Tie J, Peng H, Zhou J. MRI brain tumor segmentation using 3D U-Net with dense encoder blocks and residual decoder blocks. Comput Model Eng Sci. 2021;128(2):427–45.
9.
go back to reference Milletari F, Navab N, Ahmadi SA, V-net: Fully convolutional neural networks for volumetric medical image segmentation. In Fourth International Conference on 3D vision (3DV). IEEE. 2016;2016:565–71. Milletari F, Navab N, Ahmadi SA, V-net: Fully convolutional neural networks for volumetric medical image segmentation. In Fourth International Conference on 3D vision (3DV). IEEE. 2016;2016:565–71.
10.
go back to reference Song A, Xu L, Wang L, Wang B, Yang X, Xu B, et al. Automatic coronary artery segmentation of CCTA images with an efficient feature-fusion-and-rectification 3D-UNet. IEEE J Biomed Health Inform. 2022;26(8):4044–55.CrossRef Song A, Xu L, Wang L, Wang B, Yang X, Xu B, et al. Automatic coronary artery segmentation of CCTA images with an efficient feature-fusion-and-rectification 3D-UNet. IEEE J Biomed Health Inform. 2022;26(8):4044–55.CrossRef
11.
go back to reference Ma J, Yang X. Automatic brain tumor segmentation by exploring the multi-modality complementary information and cascaded 3D lightweight CNNs. In: International MICCAI Brainlesion Workshop. Springer; 2018. p. 25–36. Ma J, Yang X. Automatic brain tumor segmentation by exploring the multi-modality complementary information and cascaded 3D lightweight CNNs. In: International MICCAI Brainlesion Workshop. Springer; 2018. p. 25–36.
12.
go back to reference Zhao X, Wu Y, Song G, Li Z, Zhang Y, Fan Y. A deep learning model integrating FCNNs and CRFs for brain tumor segmentation. Med Image Anal. 2018;43:98–111.CrossRef Zhao X, Wu Y, Song G, Li Z, Zhang Y, Fan Y. A deep learning model integrating FCNNs and CRFs for brain tumor segmentation. Med Image Anal. 2018;43:98–111.CrossRef
13.
go back to reference Zhang D, Huang G, Zhang Q, Han J, Han J, Yu Y. Cross-modality deep feature learning for brain tumor segmentation. Pattern Recogn. 2021;110:107562.CrossRef Zhang D, Huang G, Zhang Q, Han J, Han J, Yu Y. Cross-modality deep feature learning for brain tumor segmentation. Pattern Recogn. 2021;110:107562.CrossRef
14.
go back to reference Zoph B, Le QV. Neural architecture search with reinforcement learning. In: International Conference on Learning Representations; 2017. Zoph B, Le QV. Neural architecture search with reinforcement learning. In: International Conference on Learning Representations; 2017.
15.
go back to reference Weng Y, Zhou T, Li Y, Qiu X. Nas-unet: neural architecture search for medical image segmentation. IEEE Access. 2019;7:44247–57.CrossRef Weng Y, Zhou T, Li Y, Qiu X. Nas-unet: neural architecture search for medical image segmentation. IEEE Access. 2019;7:44247–57.CrossRef
16.
go back to reference Mortazi A, Bagci U. Automatically designing CNN architectures for medical image segmentation. In: International Workshop on Machine Learning in Medical Imaging. Springer; 2018. p. 98–106. Mortazi A, Bagci U. Automatically designing CNN architectures for medical image segmentation. In: International Workshop on Machine Learning in Medical Imaging. Springer; 2018. p. 98–106.
17.
go back to reference Latif U, Shahid AR, Raza B, Ziauddin S, Khan MA. An end-to-end brain tumor segmentation system using multi-inception-UNET. Int J Imaging Syst Technol. 2021;31(4):1803–16.CrossRef Latif U, Shahid AR, Raza B, Ziauddin S, Khan MA. An end-to-end brain tumor segmentation system using multi-inception-UNET. Int J Imaging Syst Technol. 2021;31(4):1803–16.CrossRef
18.
go back to reference Badrinarayanan V, Kendall A, Cipolla R. Segnet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–95.CrossRef Badrinarayanan V, Kendall A, Cipolla R. Segnet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–95.CrossRef
19.
go back to reference Holland JH. Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. 2nd edCambridge: MIT Press. 1992;. Holland JH. Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. 2nd edCambridge: MIT Press. 1992;.
20.
go back to reference Nagarajan G, Minu R, Muthukumar B, Vedanarayanan V, Sundarsingh S. Hybrid genetic algorithm for medical image feature extraction and selection. Procedia Computer Science. 2016;85:455–62.CrossRef Nagarajan G, Minu R, Muthukumar B, Vedanarayanan V, Sundarsingh S. Hybrid genetic algorithm for medical image feature extraction and selection. Procedia Computer Science. 2016;85:455–62.CrossRef
21.
go back to reference Maulik U. Medical image segmentation using genetic algorithms. IEEE Trans Inf Technol Biomed. 2009;13(2):166–73.CrossRef Maulik U. Medical image segmentation using genetic algorithms. IEEE Trans Inf Technol Biomed. 2009;13(2):166–73.CrossRef
22.
go back to reference Arif M, Wang G. Fast curvelet transform through genetic algorithm for multimodal medical image fusion. Soft Comput. 2020;24(3):1815–36.CrossRef Arif M, Wang G. Fast curvelet transform through genetic algorithm for multimodal medical image fusion. Soft Comput. 2020;24(3):1815–36.CrossRef
23.
go back to reference Ozcalici M, Bumin M. Optimizing filter rule parameters with genetic algorithm and stock selection with artificial neural networks for an improved trading: the case of Borsa Istanbul. Expert Syst Appl. 2022;208: 118120. Ozcalici M, Bumin M. Optimizing filter rule parameters with genetic algorithm and stock selection with artificial neural networks for an improved trading: the case of Borsa Istanbul. Expert Syst Appl. 2022;208: 118120.
24.
go back to reference Garud KS, Jayaraj S, Lee MY. A review on modeling of solar photovoltaic systems using artificial neural networks, fuzzy logic, genetic algorithm and hybrid models. Int J Energy Res. 2021;45(1):6–35.CrossRef Garud KS, Jayaraj S, Lee MY. A review on modeling of solar photovoltaic systems using artificial neural networks, fuzzy logic, genetic algorithm and hybrid models. Int J Energy Res. 2021;45(1):6–35.CrossRef
25.
go back to reference Han JX, Ma MY, Wang K. Product modeling design based on genetic algorithm and BP neural network. Neural Comput Appl. 2021;33(9):4111–7.CrossRef Han JX, Ma MY, Wang K. Product modeling design based on genetic algorithm and BP neural network. Neural Comput Appl. 2021;33(9):4111–7.CrossRef
26.
go back to reference Luo W, Li Y, Urtasun R, Zemel R. Understanding the effective receptive field in deep convolutional neural networks. Adv Neural Inf Proces Syst. 2016;29. Luo W, Li Y, Urtasun R, Zemel R. Understanding the effective receptive field in deep convolutional neural networks. Adv Neural Inf Proces Syst. 2016;29.
27.
go back to reference Xie L, Yuille A. Genetic CNN. In: Proceedings of the IEEE International Conference on Computer Vision; 2017. p. 1379–1388. Xie L, Yuille A. Genetic CNN. In: Proceedings of the IEEE International Conference on Computer Vision; 2017. p. 1379–1388.
28.
go back to reference Zhang Z, Liu Q, Wang Y. Road extraction by deep residual u-net. IEEE Geosci Remote Sens Lett. 2018;15(5):749–53.CrossRef Zhang Z, Liu Q, Wang Y. Road extraction by deep residual u-net. IEEE Geosci Remote Sens Lett. 2018;15(5):749–53.CrossRef
29.
go back to reference Kamal U, Rafi AM, Hoque R, Wu J, Hasan M, etal. Lung cancer tumor region segmentation using recurrent 3d-denseunet. In: International Workshop on Thoracic Image Analysis. Springer; 2020. p. 36–47. Kamal U, Rafi AM, Hoque R, Wu J, Hasan M, etal. Lung cancer tumor region segmentation using recurrent 3d-denseunet. In: International Workshop on Thoracic Image Analysis. Springer; 2020. p. 36–47.
30.
go back to reference Menze BH, Jakab A, Bauer S, Kalpathy-Cramer J, Farahani K, Kirby J, et al. The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans Med Imaging. 2014;34(10):1993–2024.CrossRef Menze BH, Jakab A, Bauer S, Kalpathy-Cramer J, Farahani K, Kirby J, et al. The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans Med Imaging. 2014;34(10):1993–2024.CrossRef
31.
go back to reference Bakas S, Akbari H, Sotiras A, Bilello M, Rozycki M, Kirby JS, et al. Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Scientific Data. 2017;4(1):1–13.CrossRef Bakas S, Akbari H, Sotiras A, Bilello M, Rozycki M, Kirby JS, et al. Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Scientific Data. 2017;4(1):1–13.CrossRef
32.
go back to reference Hua R, Huo Q, Gao Y, Sui H, Zhang B, Sun Y, et al. Segmenting brain tumor using cascaded V-Nets in multimodal MR images. Front Comput Neurosci. 2020;14:9.CrossRef Hua R, Huo Q, Gao Y, Sui H, Zhang B, Sun Y, et al. Segmenting brain tumor using cascaded V-Nets in multimodal MR images. Front Comput Neurosci. 2020;14:9.CrossRef
33.
go back to reference Aboelenein NM, Songhao P, Koubaa A, Noor A, Afifi A. HTTU-Net: hybrid two track U-Net for automatic brain tumor segmentation. IEEE Access. 2020;8:101406–15.CrossRef Aboelenein NM, Songhao P, Koubaa A, Noor A, Afifi A. HTTU-Net: hybrid two track U-Net for automatic brain tumor segmentation. IEEE Access. 2020;8:101406–15.CrossRef
34.
go back to reference Li H, Li A, Wang M. A novel end-to-end brain tumor segmentation method using improved fully convolutional networks. Comput Biol Med. 2019;108:150–60.CrossRef Li H, Li A, Wang M. A novel end-to-end brain tumor segmentation method using improved fully convolutional networks. Comput Biol Med. 2019;108:150–60.CrossRef
35.
go back to reference Baid U, Talbar S, Rane S, Gupta S, Thakur MH, Moiyadi A, etal. A novel approach for fully automatic intra-tumor segmentation with 3D U-Net architecture for gliomas. Frontiers In Computational Neuroscience. 2020;p.10. Baid U, Talbar S, Rane S, Gupta S, Thakur MH, Moiyadi A, etal. A novel approach for fully automatic intra-tumor segmentation with 3D U-Net architecture for gliomas. Frontiers In Computational Neuroscience. 2020;p.10.
36.
go back to reference AboElenein NM, Piao S, Noor A, Ahmed PN. MIRAU-Net: an improved neural network based on U-Net for gliomas segmentation. Signal Processing: Image Communication. 2022;101: 116553. AboElenein NM, Piao S, Noor A, Ahmed PN. MIRAU-Net: an improved neural network based on U-Net for gliomas segmentation. Signal Processing: Image Communication. 2022;101: 116553.
37.
go back to reference Isensee F, Jaeger PF, Kohl SA, Petersen J, Maier-Hein KH. nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat Methods. 2021;18(2):203–11.CrossRef Isensee F, Jaeger PF, Kohl SA, Petersen J, Maier-Hein KH. nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat Methods. 2021;18(2):203–11.CrossRef
38.
go back to reference Jiang Y, Zhang Y, Lin X, Dong J, Cheng T, Liang J. SwinBTS: a method for 3D multimodal brain tumor segmentation using swin transformer. Brain Sci. 2022;12(6):797.CrossRef Jiang Y, Zhang Y, Lin X, Dong J, Cheng T, Liang J. SwinBTS: a method for 3D multimodal brain tumor segmentation using swin transformer. Brain Sci. 2022;12(6):797.CrossRef
Metadata
Title
AS-3DFCN: Automatically Seeking 3DFCN-Based Brain Tumor Segmentation
Authors
Ruihua Liu
Haoyu Nan
Yangyang Zou
Ting Xie
Publication date
18-07-2023
Publisher
Springer US
Published in
Cognitive Computation / Issue 6/2023
Print ISSN: 1866-9956
Electronic ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-023-10168-x

Other articles of this Issue 6/2023

Cognitive Computation 6/2023 Go to the issue

Premium Partner