Skip to main content
Top
Published in: Wireless Personal Communications 3/2017

19-09-2016

ASABSA: Adaptive Shape Assisted Block Search Algorithm and Fuzzy Holoentropy-Enabled Cost Function for Motion Vector Computation

Authors: R. Sudhakar, S. Letitia

Published in: Wireless Personal Communications | Issue 3/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In recent years, researchers are paying much attention towards the video compression techniques due to the increasing need of storing huge video information in less storage space. H.264 is a popular algorithm for video compression, but it requires more attention towards its performance to improve the visual quality and the compression rate. In literature, there are several algorithms for video compression by providing a good motion computation scheme which is a crucial part of H.264. But these techniques affect the visual quality and the compression rate of the video. By considering this, two important contributions are presented in this paper. The first contribution is a new motion compensation technique through adaptive assisted block search algorithm. The second contribution is devising of new objective function for selecting the best blocks handling rate-distortion tradeoffs. Accordingly, Adaptive Shape Assisted Block Search Algorithm and fuzzy holoentropy-enabled cost function are developed for motion vector computation. The performance analysis is done using two metrics such as Peak Signal Noise Ratio and Compression Ratio to prove the visual quality and compression. Five different video are used for the experimentation and the result shows that the proposed algorithm attained the highest PSNR of 41 dB when compared with elastic model-based compression and H.264.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Liu, A., Lin, W., Paul, M., Zhang, F., & Deng, C. (2011). Optimal compression plane for efficient video coding. IEEE Transactions on Image Processing, 20(10), 2788–2799.MathSciNetCrossRef Liu, A., Lin, W., Paul, M., Zhang, F., & Deng, C. (2011). Optimal compression plane for efficient video coding. IEEE Transactions on Image Processing, 20(10), 2788–2799.MathSciNetCrossRef
2.
go back to reference Gupta, R., Khanna, M. T., & Chaudhury, S. (2013). Visual saliency guided video compression algorithm. Signal Processing: Image Communication, 28, 1006–1022. Gupta, R., Khanna, M. T., & Chaudhury, S. (2013). Visual saliency guided video compression algorithm. Signal Processing: Image Communication, 28, 1006–1022.
3.
go back to reference Pan, Z., & Kwong, S. (2013). A direction-based unsymmetrical-cross multi-hexagon-grid search algorithm for H.264/AVC motion computation. Journal of Signal Processing Systems, 73, 59–72.CrossRef Pan, Z., & Kwong, S. (2013). A direction-based unsymmetrical-cross multi-hexagon-grid search algorithm for H.264/AVC motion computation. Journal of Signal Processing Systems, 73, 59–72.CrossRef
4.
go back to reference Muhit, A. A., Pickering, M. R., Frater, M. R., & Arnold, J. F. (2010). Video coding using elastic motion model and larger blocks. IEEE Transactions on Circuits and Systems for Video Technology, 20(5), 661–672.CrossRef Muhit, A. A., Pickering, M. R., Frater, M. R., & Arnold, J. F. (2010). Video coding using elastic motion model and larger blocks. IEEE Transactions on Circuits and Systems for Video Technology, 20(5), 661–672.CrossRef
5.
go back to reference Muhit, A. A., Pickering, M. R., Frater, M. R., & Arnold, J. F. (2012). Video coding using fast geometry-adaptive partitioning and an elastic motion model. Journal of Visual Communication and Image Representation, 23, 31–41.CrossRef Muhit, A. A., Pickering, M. R., Frater, M. R., & Arnold, J. F. (2012). Video coding using fast geometry-adaptive partitioning and an elastic motion model. Journal of Visual Communication and Image Representation, 23, 31–41.CrossRef
6.
go back to reference Kordasiewicz, R. C., Gallant, M. D., & Shirani, S. (2007). Affine motion prediction based on translational motion vectors. IEEE Transactions on Circuits and Systems for Video Technology, 17(10), 1388–1394.CrossRef Kordasiewicz, R. C., Gallant, M. D., & Shirani, S. (2007). Affine motion prediction based on translational motion vectors. IEEE Transactions on Circuits and Systems for Video Technology, 17(10), 1388–1394.CrossRef
7.
go back to reference Bosch, M., Zhu, F., & Delp, E. J. (2011). Segmentation-based video compression using texture and motion models. IEEE Journal of Selected Topics in Signal Processing, 5(7), 1366–1377.CrossRef Bosch, M., Zhu, F., & Delp, E. J. (2011). Segmentation-based video compression using texture and motion models. IEEE Journal of Selected Topics in Signal Processing, 5(7), 1366–1377.CrossRef
8.
go back to reference Peng, Z., Jiang, G., Yu, M., Pi, S., & Chen, F. (2012). Temporal pixel classification and smoothing for higher depth video compression performance. IEEE Transactions on Consumer Electronics, 57(4), 1815–1822.CrossRef Peng, Z., Jiang, G., Yu, M., Pi, S., & Chen, F. (2012). Temporal pixel classification and smoothing for higher depth video compression performance. IEEE Transactions on Consumer Electronics, 57(4), 1815–1822.CrossRef
9.
go back to reference Chen, X., Canagarajah, N., Nunez-Yanez, J. L., & Vitulli, R. (2012). Lossless video compression based on backward adaptive pixel-based fast motion computation. Signal Processing: Image Communication, 27, 961–972. Chen, X., Canagarajah, N., Nunez-Yanez, J. L., & Vitulli, R. (2012). Lossless video compression based on backward adaptive pixel-based fast motion computation. Signal Processing: Image Communication, 27, 961–972.
10.
go back to reference Fabrizio, J., Dubuisson, S., & Béréziat, D. (2012). Motion compensation based on tangent distance prediction for video compression. Signal Processing: Image Communication, 27(2), 153–171. Fabrizio, J., Dubuisson, S., & Béréziat, D. (2012). Motion compensation based on tangent distance prediction for video compression. Signal Processing: Image Communication, 27(2), 153–171.
11.
go back to reference Hu, Y., & Pearlman, W. A. (2012). Motion differential set partition coding for image sequence and video compression. Journal of Visual Communication and Image Representation, 23(4), 634–641.CrossRef Hu, Y., & Pearlman, W. A. (2012). Motion differential set partition coding for image sequence and video compression. Journal of Visual Communication and Image Representation, 23(4), 634–641.CrossRef
12.
go back to reference Li, Z., Qin, S., & Itti, L. (2011). Visual attention guided bit allocation in video compression. Image and Vision Computing, 29, 1–14.CrossRef Li, Z., Qin, S., & Itti, L. (2011). Visual attention guided bit allocation in video compression. Image and Vision Computing, 29, 1–14.CrossRef
13.
go back to reference Belloulata, K., Belalia, A., & Zhu, S. (2014). Object-based stereo video compression using fractals and shape-adaptive DCT. AEU-International Journal of Electronics and Communications, 68, 687–697.CrossRef Belloulata, K., Belalia, A., & Zhu, S. (2014). Object-based stereo video compression using fractals and shape-adaptive DCT. AEU-International Journal of Electronics and Communications, 68, 687–697.CrossRef
14.
go back to reference Cheung, C.-H., & Po, L.-M. (2005). Novel cross-diamond-hexagonal search algorithms for fast block motion computation. IEEE Transactions on Multimedia, 7(1), 16–22.CrossRef Cheung, C.-H., & Po, L.-M. (2005). Novel cross-diamond-hexagonal search algorithms for fast block motion computation. IEEE Transactions on Multimedia, 7(1), 16–22.CrossRef
15.
go back to reference Liu, P., Gao, Y., & Jia, K. (2014). An adaptive motion computation scheme for video coding. The Scientific Journal, Article ID 381056, 14 p., February 2014. Liu, P., Gao, Y., & Jia, K. (2014). An adaptive motion computation scheme for video coding. The Scientific Journal, Article ID 381056, 14 p., February 2014.
16.
go back to reference Duanmu, C., & Zhang, Y. (2012). A new fast block motion algorithm based on octagonand triangle. International Journal of Digital Content Technology & its Applications, 6(10), 369–377.CrossRef Duanmu, C., & Zhang, Y. (2012). A new fast block motion algorithm based on octagonand triangle. International Journal of Digital Content Technology & its Applications, 6(10), 369–377.CrossRef
17.
go back to reference Ayatollahi, S. M., Moghadam, A. M. E., & Hosseini, M. S. (2014). A taxonomy of depth map creation methods used in multiview video compression. Multimedia Tools and Applications, 72(2), 1887–1909.CrossRef Ayatollahi, S. M., Moghadam, A. M. E., & Hosseini, M. S. (2014). A taxonomy of depth map creation methods used in multiview video compression. Multimedia Tools and Applications, 72(2), 1887–1909.CrossRef
18.
go back to reference Kumar, P., Pande, A., & Mittal, A. (2012). Efficient compression and network adaptive video coding for distributed video surveillance. Multimedia Tools and Applications, 56(2), 365–384.CrossRef Kumar, P., Pande, A., & Mittal, A. (2012). Efficient compression and network adaptive video coding for distributed video surveillance. Multimedia Tools and Applications, 56(2), 365–384.CrossRef
19.
go back to reference Fradj, B. B., & Zaid, A. O. (2014). Scalable video coding using motion-compensated temporal filtering and intra-band wavelet based compression. Multimedia Tools and Applications, 69(3), 1089–1109.CrossRef Fradj, B. B., & Zaid, A. O. (2014). Scalable video coding using motion-compensated temporal filtering and intra-band wavelet based compression. Multimedia Tools and Applications, 69(3), 1089–1109.CrossRef
20.
go back to reference Sharma, N., Zhu, J., Zheng, Y. F., & Balster, E. J. (2013). Arbitrarily shaped virtual-object based video compression. Multimedia Tools and Applications, 62(3), 659–680.CrossRef Sharma, N., Zhu, J., Zheng, Y. F., & Balster, E. J. (2013). Arbitrarily shaped virtual-object based video compression. Multimedia Tools and Applications, 62(3), 659–680.CrossRef
21.
go back to reference Metkar, S. P., & Talbar, S. N. (2010). Fast motion computation using modified orthogonal search algorithm for video compression. Signal, Image and Video Processing, 4(1), 123–128.CrossRef Metkar, S. P., & Talbar, S. N. (2010). Fast motion computation using modified orthogonal search algorithm for video compression. Signal, Image and Video Processing, 4(1), 123–128.CrossRef
22.
go back to reference Choi, J.-A., & Ho, Y.-S. (2013). Efficient residual data coding in CABAC for HEVC lossless video compression. Signal, Image and Video Processing, 9(5), 1055–1066.CrossRef Choi, J.-A., & Ho, Y.-S. (2013). Efficient residual data coding in CABAC for HEVC lossless video compression. Signal, Image and Video Processing, 9(5), 1055–1066.CrossRef
23.
go back to reference Purwar, R. K., Prakash, N., & Rajpal, N. (2011). A matching criterion for motion compensation in the temporal coding of video signal. Signal, Image and Video Processing, 5(2), 133–139.CrossRef Purwar, R. K., Prakash, N., & Rajpal, N. (2011). A matching criterion for motion compensation in the temporal coding of video signal. Signal, Image and Video Processing, 5(2), 133–139.CrossRef
24.
go back to reference Morbee, M., Roca, A., Prades-Nebot, J., Pižurica, A., & Philips, W. (2008). Reduced decoder complexity and latency in pixel-domain Wyner–Ziv video coders. Signal, Image and Video Processing, 2(2), 129–140.CrossRef Morbee, M., Roca, A., Prades-Nebot, J., Pižurica, A., & Philips, W. (2008). Reduced decoder complexity and latency in pixel-domain Wyner–Ziv video coders. Signal, Image and Video Processing, 2(2), 129–140.CrossRef
25.
go back to reference Jang, J., Lee, H., Hong, S.-M., & Jeong, J. (2012). Enhanced motion computation algorithm with prefiltering in video compression. Optical Engineering, 51(3), 037002-1.CrossRef Jang, J., Lee, H., Hong, S.-M., & Jeong, J. (2012). Enhanced motion computation algorithm with prefiltering in video compression. Optical Engineering, 51(3), 037002-1.CrossRef
Metadata
Title
ASABSA: Adaptive Shape Assisted Block Search Algorithm and Fuzzy Holoentropy-Enabled Cost Function for Motion Vector Computation
Authors
R. Sudhakar
S. Letitia
Publication date
19-09-2016
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 3/2017
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-016-3704-z

Other articles of this Issue 3/2017

Wireless Personal Communications 3/2017 Go to the issue