Skip to main content
Top
Published in: Journal of Nanoparticle Research 6/2023

01-06-2023 | Review

Assessment of gemcitabine hydrochloride-based nanotherapeutics in cancer: a proof of concept study

Authors: Laxmi Devi, Tarique Mahmood Ansari, Ashish Kumar, Poonam Kushwaha

Published in: Journal of Nanoparticle Research | Issue 6/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Cancer remains a serious health problem in terms of incidence and mortality worldwide. As a result, researchers are working to identify new chemotherapeutic therapies or, potentially, to use innovative drug delivery methods in existing therapies. Recently, there has been a lot of interest in using nanocarriers as drug delivery systems, particularly for the treatment of cancer. Several novel nanocarrier-mediated drug delivery systems are currently being used to deliver chemotherapeutic agents to specific sites. Polymeric nanoparticles, liposomes, polymeric micelles, carbon nanotubes, dendrimers, solid lipid nanoparticles, magnetic nanoparticles and quantum dots are all examples of important nanocarriers. One of the most often prescribed chemotherapeutics for first-line therapy is gemcitabine hydrochloride, which has a broad spectrum of effects. Gemcitabine hydrochloride is an intriguing example of a drug for which various nanostructured targeted delivery methods are being explored over history. Even though some of these systems already exist on the market, there is continued research on this topic and new solutions are continually sought. In this context, the present review examines gemcitabine not as a specific drug, but as a proof of concept study that has drawn upon a wide range of innovative nanotechnology approaches.

Graphical Abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68(6):394–424CrossRef Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68(6):394–424CrossRef
2.
go back to reference Rl S, Kd M, Jemal A (2015) Cancer statistics, 2015. CA Cancer J Clin 65(1):21254 Rl S, Kd M, Jemal A (2015) Cancer statistics, 2015. CA Cancer J Clin 65(1):21254
3.
go back to reference Kairdolf BA, Smith AM, Stokes TH, Wang MD, Young AN, Nie S (2013) Semiconductor quantum dots for bioimaging and biodiagnostic applications. Annu Rev Anal Chem (Palo Alto, Calif) 6(1):143 Kairdolf BA, Smith AM, Stokes TH, Wang MD, Young AN, Nie S (2013) Semiconductor quantum dots for bioimaging and biodiagnostic applications. Annu Rev Anal Chem (Palo Alto, Calif) 6(1):143
4.
go back to reference Nandini PT, Doijad RC, Shivakumar HN, Dandagi PM (2015) Formulation and evaluation of gemcitabine-loaded solid lipid nanoparticles. Drug Deliv 22(5):647–651 Nandini PT, Doijad RC, Shivakumar HN, Dandagi PM (2015) Formulation and evaluation of gemcitabine-loaded solid lipid nanoparticles. Drug Deliv 22(5):647–651
5.
go back to reference Aslan B, Ozpolat B, Sood AK, Lopez-Berestein G (2013) Nanotechnology in cancer therapy. J Drug Target 21(10):904–913 Aslan B, Ozpolat B, Sood AK, Lopez-Berestein G (2013) Nanotechnology in cancer therapy. J Drug Target 21(10):904–913
6.
go back to reference Benko A, Medina-Cruz D, Vernet-Crua A, O’Connell CP, Świętek M, Barabadi H, Saravanan M, Webster TJ (2021) Nanocarrier drug resistant tumor interactions: novel approaches to fight drug resistance in cancer. Cancer Drug Resist 4(2):264 Benko A, Medina-Cruz D, Vernet-Crua A, O’Connell CP, Świętek M, Barabadi H, Saravanan M, Webster TJ (2021) Nanocarrier drug resistant tumor interactions: novel approaches to fight drug resistance in cancer. Cancer Drug Resist 4(2):264
7.
go back to reference Abdul Razak M, Devi Prasad Boggupalli S, Viswanath B (2015) Drug-loaded nanocarriers in tumor targeted drug delivery. Current. Biotechnology 4(3):319–344 Abdul Razak M, Devi Prasad Boggupalli S, Viswanath B (2015) Drug-loaded nanocarriers in tumor targeted drug delivery. Current. Biotechnology 4(3):319–344
8.
go back to reference Gratton SEA, Ropp PA, Pohlhaus PD, Luft JC, Madden VJ, Napier ME, DeSimone JM (2008) The effect of particle design on cellular internalization pathways. Proc Natl Acad Sci USA 105:11613–11618 Gratton SEA, Ropp PA, Pohlhaus PD, Luft JC, Madden VJ, Napier ME, DeSimone JM (2008) The effect of particle design on cellular internalization pathways. Proc Natl Acad Sci USA 105:11613–11618
9.
go back to reference Khosravi-Darani K, Pardakhty A, Honarpisheh H, Rao VS, Mozafari MR (2007) The role of high-resolution imaging in the evaluation of nanosystems for bioactive encapsulation and targeted nanotherapy. Micron 38:804–818 Khosravi-Darani K, Pardakhty A, Honarpisheh H, Rao VS, Mozafari MR (2007) The role of high-resolution imaging in the evaluation of nanosystems for bioactive encapsulation and targeted nanotherapy. Micron 38:804–818
10.
go back to reference Choi CH, Alabi CA, Webster P, Davis ME (2010) Mechanism of active targeting in solid tumors with transferrin-containing gold nanoparticles. Proc Natl Acad Sci USA 107(3):1235–1240 Choi CH, Alabi CA, Webster P, Davis ME (2010) Mechanism of active targeting in solid tumors with transferrin-containing gold nanoparticles. Proc Natl Acad Sci USA 107(3):1235–1240
11.
go back to reference Lei W, Yang C, Wu Y, Ru G, He X, Tong X, Wang S (2022) Nanocarriers surface engineered with cell membranes for cancer targeted chemotherapy. J Nanobiotechnol 20(1):1–21 Lei W, Yang C, Wu Y, Ru G, He X, Tong X, Wang S (2022) Nanocarriers surface engineered with cell membranes for cancer targeted chemotherapy. J Nanobiotechnol 20(1):1–21
12.
go back to reference Singhvi G, Rapalli VK, Nagpal S, Dubey SK, Saha RN (2020) Nanocarriers as potential targeted drug delivery for cancer therapy. In: Nanoscience in Medicine, vol 1. Springer, Cham, pp 51–88 Singhvi G, Rapalli VK, Nagpal S, Dubey SK, Saha RN (2020) Nanocarriers as potential targeted drug delivery for cancer therapy. In: Nanoscience in Medicine, vol 1. Springer, Cham, pp 51–88
13.
go back to reference Kairdolf BA et al (2013) Semiconductor quantum dots for bioimaging and biodiagnostic applications. Annu Rev Anal Chem 6:143–162 Kairdolf BA et al (2013) Semiconductor quantum dots for bioimaging and biodiagnostic applications. Annu Rev Anal Chem 6:143–162
14.
go back to reference Dadwal A, Baldi A, Narang RK (2018) Nanoparticles as carriers for drug delivery in cancer. Artif Cells Nanomed Biotechnol 46(sup2):295–305 Dadwal A, Baldi A, Narang RK (2018) Nanoparticles as carriers for drug delivery in cancer. Artif Cells Nanomed Biotechnol 46(sup2):295–305
15.
go back to reference Kumari P, Ghosh B, Biswas S (2016) Nanocarriers for cancer-targeted drug delivery. J Drug Target 24(3):179–191 Kumari P, Ghosh B, Biswas S (2016) Nanocarriers for cancer-targeted drug delivery. J Drug Target 24(3):179–191
16.
go back to reference Edis Z, Wang J, Waqas MK, Ijaz M, Ijaz M (2021) Nanocarriers-mediated drug delivery systems for anticancer agents: an overview and perspectives. Int J Nanomed 16:1313–1330 Edis Z, Wang J, Waqas MK, Ijaz M, Ijaz M (2021) Nanocarriers-mediated drug delivery systems for anticancer agents: an overview and perspectives. Int J Nanomed 16:1313–1330
17.
go back to reference Din FU, Aman W, Ullah I, Qureshi OS, Mustapha O, Shafique S, Zeb A (2017) Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int J Nanomed 12:7291–7309 Din FU, Aman W, Ullah I, Qureshi OS, Mustapha O, Shafique S, Zeb A (2017) Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int J Nanomed 12:7291–7309
18.
go back to reference Lammers F, Kiessling WE, Hennink G (2012) Storm, Drug targeting to tumors principles, pitfalls and (pre-) clinical progress. J Control Release 161:175–187 Lammers F, Kiessling WE, Hennink G (2012) Storm, Drug targeting to tumors principles, pitfalls and (pre-) clinical progress. J Control Release 161:175–187
19.
go back to reference Tian T, Ruan J, Zhang J, Zhao CX, Chen D, Shan J (2022) Nanocarrier-based tumor-targeting drug delivery systems for hepatocellular carcinoma treatments: enhanced therapeutic efficacy and reduced drug toxicity. J Biomed Nanotechnol 18(3):660–676 Tian T, Ruan J, Zhang J, Zhao CX, Chen D, Shan J (2022) Nanocarrier-based tumor-targeting drug delivery systems for hepatocellular carcinoma treatments: enhanced therapeutic efficacy and reduced drug toxicity. J Biomed Nanotechnol 18(3):660–676
20.
go back to reference Yan L, Shen J, Wang J, Yang X, Dong S, Lu S (2020) Nanoparticle-based drug delivery system: a patient-friendly chemotherapy for oncology. Dose-Response 18(3):1559325820936161 Yan L, Shen J, Wang J, Yang X, Dong S, Lu S (2020) Nanoparticle-based drug delivery system: a patient-friendly chemotherapy for oncology. Dose-Response 18(3):1559325820936161
21.
go back to reference Abdul Razak M, Devi Prasad Boggupalli S, Viswanath B (2015) Drug-loaded nanocarriers in tumor targeted drug delivery. Curr Biotechnol 4(3):319–344 Abdul Razak M, Devi Prasad Boggupalli S, Viswanath B (2015) Drug-loaded nanocarriers in tumor targeted drug delivery. Curr Biotechnol 4(3):319–344
22.
go back to reference Han H, Li S, Zhong Y, Huang Y, Wang K, Jin Q, Ji J, Yao K (2021) Emerging pro-drug and nano-drug strategies for gemcitabine-based cancer therapy. Asian J Pharm Sci Han H, Li S, Zhong Y, Huang Y, Wang K, Jin Q, Ji J, Yao K (2021) Emerging pro-drug and nano-drug strategies for gemcitabine-based cancer therapy. Asian J Pharm Sci
23.
go back to reference Samanta K, Setua S, Kumari S, Jaggi M, Yallapu MM, Chauhan SC (2019) Gemcitabine combination nano therapies for pancreatic cancer. Pharmaceutics 11(11):574 Samanta K, Setua S, Kumari S, Jaggi M, Yallapu MM, Chauhan SC (2019) Gemcitabine combination nano therapies for pancreatic cancer. Pharmaceutics 11(11):574
24.
go back to reference Shetty A, Nagesh PK, Setua S, Hafeez BB, Jaggi M, Yallapu MM, Chauhan SC (2020) Novel paclitaxel nanoformulation impairs de novo lipid synthesis in pancreatic cancer cells and enhances gemcitabine efficacy. ACS Omega 5(15):8982–8991 Shetty A, Nagesh PK, Setua S, Hafeez BB, Jaggi M, Yallapu MM, Chauhan SC (2020) Novel paclitaxel nanoformulation impairs de novo lipid synthesis in pancreatic cancer cells and enhances gemcitabine efficacy. ACS Omega 5(15):8982–8991
25.
go back to reference Emamzadeh M, Pasparakis G. Polymer coated gold nanoshells for combinational photochemotherapy of pancreatic cancer with gemcitabine. Sci Rep 2021;11(1):1-5. Emamzadeh M, Pasparakis G. Polymer coated gold nanoshells for combinational photochemotherapy of pancreatic cancer with gemcitabine. Sci Rep 2021;11(1):1-5.
26.
go back to reference Bhattacharya S, Anjum MM, Patel KK (2022) Gemcitabine cationic polymeric nanoparticles against ovarian cancer: formulation, characterization, and targeted drug delivery. Drug Deliv 29(1):1060–1074 Bhattacharya S, Anjum MM, Patel KK (2022) Gemcitabine cationic polymeric nanoparticles against ovarian cancer: formulation, characterization, and targeted drug delivery. Drug Deliv 29(1):1060–1074
27.
go back to reference Stylianopoulos T, Wong C, Bawendi MG, Jain RK, Fukumura D (2012) Multistage nanoparticles for improved delivery into tumor tissue. Methods Enzymol 508:109–130 Stylianopoulos T, Wong C, Bawendi MG, Jain RK, Fukumura D (2012) Multistage nanoparticles for improved delivery into tumor tissue. Methods Enzymol 508:109–130
28.
go back to reference Chidambaram M, Manavalan R, Kathiresan K (2011) Nanotherapeutics to overcome conventional cancer chemotherapy limitations. J Pharm Pharm Sci 14(1):67–77 Chidambaram M, Manavalan R, Kathiresan K (2011) Nanotherapeutics to overcome conventional cancer chemotherapy limitations. J Pharm Pharm Sci 14(1):67–77
29.
go back to reference Chen AM, Zhang M, Wei D et al (2009) Co-delivery of doxorubicin and Bcl-2 siRNA by mesoporous silica nanoparticles enhances the efficacy of chemotherapy in multidrug-resistant cancer cells. Small 5(23):2673–2677 Chen AM, Zhang M, Wei D et al (2009) Co-delivery of doxorubicin and Bcl-2 siRNA by mesoporous silica nanoparticles enhances the efficacy of chemotherapy in multidrug-resistant cancer cells. Small 5(23):2673–2677
30.
go back to reference Yao Y, Zhou Y, Liu L, Xu Y, Chen Q, Wang Y, Wu S, Deng Y, Zhang J, Shao A (2020) Nanoparticle-based drug delivery in cancer therapy and its role in overcoming drug resistance. Front Mol Biosci 7:193 Yao Y, Zhou Y, Liu L, Xu Y, Chen Q, Wang Y, Wu S, Deng Y, Zhang J, Shao A (2020) Nanoparticle-based drug delivery in cancer therapy and its role in overcoming drug resistance. Front Mol Biosci 7:193
31.
go back to reference Ranganathan R, Madanmohan S, Kesavan A et al (2012) Nanomedicine: towards development of patient-friendly drug-delivery systems for oncological applications. Int J Nanomed 7:1043–1060 Ranganathan R, Madanmohan S, Kesavan A et al (2012) Nanomedicine: towards development of patient-friendly drug-delivery systems for oncological applications. Int J Nanomed 7:1043–1060
32.
go back to reference Hossen S, Hossain MK, Basher MK, Mia MN, Rahman MT, Uddin MJ (2019) Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: a review. J Adv Res 15:1–8 Hossen S, Hossain MK, Basher MK, Mia MN, Rahman MT, Uddin MJ (2019) Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: a review. J Adv Res 15:1–8
33.
go back to reference Sahoo SK, Parveen S, Panda JJ (2007) The present and future of nanotechnology in human health care. Nanomedicine 3(1):20–31 Sahoo SK, Parveen S, Panda JJ (2007) The present and future of nanotechnology in human health care. Nanomedicine 3(1):20–31
34.
go back to reference Dong X, Mumper RJ (2010) Nanomedicinal strategies to treat multidrug-resistant tumors: current progress. Nanomedicine 5(4):597–615 Dong X, Mumper RJ (2010) Nanomedicinal strategies to treat multidrug-resistant tumors: current progress. Nanomedicine 5(4):597–615
35.
go back to reference Rosenblum D, Joshi N, Tao W, Karp JM, Peer D (2018) Progress and challenges towards targeted delivery of cancer therapeutics. Nat Commun 9(1):1–2 Rosenblum D, Joshi N, Tao W, Karp JM, Peer D (2018) Progress and challenges towards targeted delivery of cancer therapeutics. Nat Commun 9(1):1–2
36.
go back to reference Davis ME, Chen Z, Shin DM (2008) Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov 7:771–782 Davis ME, Chen Z, Shin DM (2008) Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov 7:771–782
37.
go back to reference Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nano 2:751–760 Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nano 2:751–760
38.
go back to reference Chidambaram M, Manavalan R, Kathiresan K (2011) Nanotherapeutics to overcome conventional cancer chemotherapy limitations. J Pharm Pharm Sci 14(1):67–77 Chidambaram M, Manavalan R, Kathiresan K (2011) Nanotherapeutics to overcome conventional cancer chemotherapy limitations. J Pharm Pharm Sci 14(1):67–77
39.
go back to reference Dahiya S, Dahiya R, Hernández E (2021) Nanocarriers for anticancer drug targeting: recent trends and challenges. Crit Rev Ther Drug Carrier Syst 38(6) Dahiya S, Dahiya R, Hernández E (2021) Nanocarriers for anticancer drug targeting: recent trends and challenges. Crit Rev Ther Drug Carrier Syst 38(6)
40.
go back to reference Cho K, Wang X, Nie S, Chen Z, Shin DM (2008) Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res 14:1310–1316 Cho K, Wang X, Nie S, Chen Z, Shin DM (2008) Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res 14:1310–1316
41.
go back to reference Tapasya K, Kumar AS, Dharmarajan A, Parvathi VD (2022) Nanocarriers: the promising future to cancer diagnostics and treatment. Biomed Pharmacol J 15(2) Tapasya K, Kumar AS, Dharmarajan A, Parvathi VD (2022) Nanocarriers: the promising future to cancer diagnostics and treatment. Biomed Pharmacol J 15(2)
43.
go back to reference Kenchegowda M, Rahamathulla M, Hani U, Begum MY, Guruswamy S, Osmani RAM, Gowrav MP, Alshehri S, Ghoneim MM, Alshlowi A, Gowda DV (2021) Smart nanocarriers as an emerging platform for cancer therapy: a review. Molecules 27(1):146 Kenchegowda M, Rahamathulla M, Hani U, Begum MY, Guruswamy S, Osmani RAM, Gowrav MP, Alshehri S, Ghoneim MM, Alshlowi A, Gowda DV (2021) Smart nanocarriers as an emerging platform for cancer therapy: a review. Molecules 27(1):146
44.
go back to reference Danhier F, Feron O, Préat V (2010) To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release 148(2):135–146 Danhier F, Feron O, Préat V (2010) To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release 148(2):135–146
46.
go back to reference Fang J, Nakamura H, Maeda H (2011) The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev 63(3):136–151 Fang J, Nakamura H, Maeda H (2011) The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev 63(3):136–151
47.
go back to reference Dastidar DG, Ghosh D, Das A (2022) Recent developments in nanocarriers for cancer chemotherapy. OpenNano:100080 Dastidar DG, Ghosh D, Das A (2022) Recent developments in nanocarriers for cancer chemotherapy. OpenNano:100080
48.
go back to reference Huda S, Alam MA, Sharma PK (2020) Smart nanocarriers-based drug delivery for cancer therapy: an innovative and developing strategy. J Drug Deliv Sci Technol 60:102018 Huda S, Alam MA, Sharma PK (2020) Smart nanocarriers-based drug delivery for cancer therapy: an innovative and developing strategy. J Drug Deliv Sci Technol 60:102018
49.
go back to reference Fang Z, Shen Y, Gao D (2021) Stimulus-responsive nanocarriers for targeted drug delivery. New J Chem 45(10):4534–4544 Fang Z, Shen Y, Gao D (2021) Stimulus-responsive nanocarriers for targeted drug delivery. New J Chem 45(10):4534–4544
50.
go back to reference Neerooa BN, Ooi LT, Shameli K, Dahlan NA, Islam JM, Pushpamalar J, Teow SY (2021) Development of polymer-assisted nanoparticles and nanogels for cancer therapy: an update. Gels. 7(2):60 Neerooa BN, Ooi LT, Shameli K, Dahlan NA, Islam JM, Pushpamalar J, Teow SY (2021) Development of polymer-assisted nanoparticles and nanogels for cancer therapy: an update. Gels. 7(2):60
51.
go back to reference Gagliardi A, Giuliano E, Venkateswararao E, Fresta M, Bulotta S, Awasthi V, Cosco D (2021) Biodegradable polymeric nanoparticles for drug delivery to solid tumors. Front Pharmacol 12:601626 Gagliardi A, Giuliano E, Venkateswararao E, Fresta M, Bulotta S, Awasthi V, Cosco D (2021) Biodegradable polymeric nanoparticles for drug delivery to solid tumors. Front Pharmacol 12:601626
52.
go back to reference Resen AK, Atiroğlu A, Atiroğlu V, Eskiler GG, Aziz IH, Kaleli S, Özacar M (2022) Effectiveness of 5-Fluorouracil and gemcitabine hydrochloride loaded iron based chitosan-coated MIL-100 composite as an advanced, biocompatible, pH-sensitive and smart drug delivery system on breast cancer therapy. Int J Biol Macromol 198:175–186 Resen AK, Atiroğlu A, Atiroğlu V, Eskiler GG, Aziz IH, Kaleli S, Özacar M (2022) Effectiveness of 5-Fluorouracil and gemcitabine hydrochloride loaded iron based chitosan-coated MIL-100 composite as an advanced, biocompatible, pH-sensitive and smart drug delivery system on breast cancer therapy. Int J Biol Macromol 198:175–186
54.
go back to reference García-García G, Fernández-Álvarez F, Cabeza L, Delgado ÁV, Melguizo C, Prados JC, Arias JL (2020) Gemcitabine-loaded magnetically responsive poly (ε-caprolactone) nanoparticles against breast cancer. Polymers 12(12):2790 García-García G, Fernández-Álvarez F, Cabeza L, Delgado ÁV, Melguizo C, Prados JC, Arias JL (2020) Gemcitabine-loaded magnetically responsive poly (ε-caprolactone) nanoparticles against breast cancer. Polymers 12(12):2790
57.
go back to reference Jamil A, Mirza MA, Anwer K, Thakur PS, Alshahrani S, Alshetaili AS, Iqbal Z (2019) Co-delivery of gemcitabine and simvastatin through PLGA polymeric nanoparticles for the treatment of pancreatic cancer: in-vitro characterization, cellular uptake and pharmacokinetic studies. Drug Dev Ind Pharm:1–34. https://doi.org/10.1080/03639045.2019.1569040 Jamil A, Mirza MA, Anwer K, Thakur PS, Alshahrani S, Alshetaili AS, Iqbal Z (2019) Co-delivery of gemcitabine and simvastatin through PLGA polymeric nanoparticles for the treatment of pancreatic cancer: in-vitro characterization, cellular uptake and pharmacokinetic studies. Drug Dev Ind Pharm:1–34. https://​doi.​org/​10.​1080/​03639045.​2019.​1569040
58.
go back to reference Yalcin TE, Ilbasmis-Tamer S, Takka S (2018) Development and characterization of gemcitabine hydrochloride loaded lipid polymer hybrid nanoparticles (LPHNs) using central composite design. Int J Pharm 548(1):255–262 Yalcin TE, Ilbasmis-Tamer S, Takka S (2018) Development and characterization of gemcitabine hydrochloride loaded lipid polymer hybrid nanoparticles (LPHNs) using central composite design. Int J Pharm 548(1):255–262
59.
go back to reference Vandana M, Sahoo SK (2010) Long circulation and cytotoxicity of PEGylated gemcitabine and its potential for the treatment of pancreatic cancer. Biomaterials 31(35):9340–9356 Vandana M, Sahoo SK (2010) Long circulation and cytotoxicity of PEGylated gemcitabine and its potential for the treatment of pancreatic cancer. Biomaterials 31(35):9340–9356
60.
go back to reference Alibolandi M, Ramezani M, Abnous K, Hadizadeh F (2016) AS1411 aptamer-decorated biodegradable polyethylene glycol–poly (lactic-co-glycolic acid) nanopolymersomes for the targeted delivery of gemcitabine to non–small cell lung cancer in vitro. J Pharm Sci 105(5):1741–1749 Alibolandi M, Ramezani M, Abnous K, Hadizadeh F (2016) AS1411 aptamer-decorated biodegradable polyethylene glycol–poly (lactic-co-glycolic acid) nanopolymersomes for the targeted delivery of gemcitabine to non–small cell lung cancer in vitro. J Pharm Sci 105(5):1741–1749
61.
go back to reference Yalcin TE, Ilbasmis-Tamer S, Ibisoglu B, Özdemir A, Ark M, Takka S (2018) Gemcitabine hydrochloride-loaded liposomes and nanoparticles: comparison of encapsulation efficiency, drug release, particle size, and cytotoxicity. Pharm Dev Technol 23(1):76–86 Yalcin TE, Ilbasmis-Tamer S, Ibisoglu B, Özdemir A, Ark M, Takka S (2018) Gemcitabine hydrochloride-loaded liposomes and nanoparticles: comparison of encapsulation efficiency, drug release, particle size, and cytotoxicity. Pharm Dev Technol 23(1):76–86
63.
go back to reference Di Y, Gao Y, Gai X, Wang D, Wang Y, Yang X, Zhang D, Pan W, Yang X (2017) Co-delivery of hydrophilic gemcitabine and hydrophobic paclitaxel into novel polymeric micelles for cancer treatment. RSC Adv 7(39):24030–24039 Di Y, Gao Y, Gai X, Wang D, Wang Y, Yang X, Zhang D, Pan W, Yang X (2017) Co-delivery of hydrophilic gemcitabine and hydrophobic paclitaxel into novel polymeric micelles for cancer treatment. RSC Adv 7(39):24030–24039
65.
go back to reference Wu LP, Ficker M, Christensen JB, Trohopoulos PN, Moghimi SM (2015) Dendrimers in medicine: therapeutic concepts and pharmaceutical challenges. Bioconjug Chem 26(7):1198–1211 Wu LP, Ficker M, Christensen JB, Trohopoulos PN, Moghimi SM (2015) Dendrimers in medicine: therapeutic concepts and pharmaceutical challenges. Bioconjug Chem 26(7):1198–1211
66.
go back to reference Esfand R, Tomalia DA (2001) Poly (amidoamine)(PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications. Drug Discov Today 6(8):427–436 Esfand R, Tomalia DA (2001) Poly (amidoamine)(PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications. Drug Discov Today 6(8):427–436
67.
go back to reference Kesharwani P, Banerjee S, Gupta U, Amin MC, Padhye S, Sarkar FH, Iyer AK (2015) PAMAM dendrimers as promising nanocarriers for RNAi therapeutics. Mater Today 18(10):565–572 Kesharwani P, Banerjee S, Gupta U, Amin MC, Padhye S, Sarkar FH, Iyer AK (2015) PAMAM dendrimers as promising nanocarriers for RNAi therapeutics. Mater Today 18(10):565–572
68.
go back to reference Almutairi A, Rossin R, Shokeen M, Hagooly A, Ananth A, Capoccia B, Guillaudeu S, Abendschein D, Anderson CJ, Welch MJ, Fréchet JM (2009) Biodegradable dendritic positron-emitting nanoprobes for the noninvasive imaging of angiogenesis. Proc Natl Acad Sci USA 106(3):685–690 Almutairi A, Rossin R, Shokeen M, Hagooly A, Ananth A, Capoccia B, Guillaudeu S, Abendschein D, Anderson CJ, Welch MJ, Fréchet JM (2009) Biodegradable dendritic positron-emitting nanoprobes for the noninvasive imaging of angiogenesis. Proc Natl Acad Sci USA 106(3):685–690
69.
go back to reference Sapsford KE, Algar WR, Berti L, Gemmill KB, Casey BJ, Oh E, Stewart MH, Medintz IL (2013) Functionalizing nanoparticles with biological molecules: developing chemistries that facilitate nanotechnology. Chem Rev 113(3):1904–2074 Sapsford KE, Algar WR, Berti L, Gemmill KB, Casey BJ, Oh E, Stewart MH, Medintz IL (2013) Functionalizing nanoparticles with biological molecules: developing chemistries that facilitate nanotechnology. Chem Rev 113(3):1904–2074
70.
go back to reference Singh S, Hassan D, Aldawsari HM, Molugulu N, Shukla R, Kesharwani P (2020) Immune checkpoint inhibitors: a promising anticancer therapy. Drug Discov Today 25(1):223–229 Singh S, Hassan D, Aldawsari HM, Molugulu N, Shukla R, Kesharwani P (2020) Immune checkpoint inhibitors: a promising anticancer therapy. Drug Discov Today 25(1):223–229
71.
go back to reference Hanurry EY, Mekonnen TW, Andrgie AT, Darge HF, Birhan YS, Hsu WH, Chou HY, Cheng CC, Lai JY, Tsai HC (2020) Biotin-decorated PAMAM G4. 5 dendrimer nanoparticles to enhance the delivery, anti-proliferative, and apoptotic effects of chemotherapeutic drug in cancer cells. Pharmaceutics 12(5):443 Hanurry EY, Mekonnen TW, Andrgie AT, Darge HF, Birhan YS, Hsu WH, Chou HY, Cheng CC, Lai JY, Tsai HC (2020) Biotin-decorated PAMAM G4. 5 dendrimer nanoparticles to enhance the delivery, anti-proliferative, and apoptotic effects of chemotherapeutic drug in cancer cells. Pharmaceutics 12(5):443
72.
go back to reference Zhang C, Pan D, Li J, Hu J, Bains A, Guys N, Zhu H, Li X, Luo K, Gong Q, Gu Z (2017) Enzyme-responsive peptide dendrimer-gemcitabine conjugate as a controlled-release drug delivery vehicle with enhanced antitumor efficacy. Acta Biomater 55:153–162 Zhang C, Pan D, Li J, Hu J, Bains A, Guys N, Zhu H, Li X, Luo K, Gong Q, Gu Z (2017) Enzyme-responsive peptide dendrimer-gemcitabine conjugate as a controlled-release drug delivery vehicle with enhanced antitumor efficacy. Acta Biomater 55:153–162
74.
go back to reference Bhargava S. 2018 Mannosylated poly (propylene imine) dendrimer mediated lung delivery of anticancer bioactive. In Pediatric Blood & Cancer (Vol. 65, pp. S417-S418). 111 River St, Hoboken 07030-5774, NJ USA: Wiley. Bhargava S. 2018 Mannosylated poly (propylene imine) dendrimer mediated lung delivery of anticancer bioactive. In Pediatric Blood & Cancer (Vol. 65, pp. S417-S418). 111 River St, Hoboken 07030-5774, NJ USA: Wiley.
75.
go back to reference Öztürk K, Esendağlı G, Gürbüz MU, Tülü M, Çalış S (2017) Effective targeting of gemcitabine to pancreatic cancer through PEG-cored Flt-1 antibody-conjugated dendrimers. Int J Pharm 517(1-2):157–167 Öztürk K, Esendağlı G, Gürbüz MU, Tülü M, Çalış S (2017) Effective targeting of gemcitabine to pancreatic cancer through PEG-cored Flt-1 antibody-conjugated dendrimers. Int J Pharm 517(1-2):157–167
76.
go back to reference Parsian M, Mutlu P, Yalcin S, Tezcaner A, Gunduz U (2016) Half generations magnetic PAMAM dendrimers as an effective system for targeted gemcitabine delivery. Int J Pharm 515(1-2):104–113 Parsian M, Mutlu P, Yalcin S, Tezcaner A, Gunduz U (2016) Half generations magnetic PAMAM dendrimers as an effective system for targeted gemcitabine delivery. Int J Pharm 515(1-2):104–113
77.
go back to reference Soni N, Jain K, Gupta U, Jain NK (2015) Controlled delivery of gemcitabine hydrochloride using mannosylated poly (propyleneimine) dendrimers. J Nanopart Res 17(11):1–7 Soni N, Jain K, Gupta U, Jain NK (2015) Controlled delivery of gemcitabine hydrochloride using mannosylated poly (propyleneimine) dendrimers. J Nanopart Res 17(11):1–7
78.
go back to reference Pourjavadi A, Tehrani ZM, Moghanaki AA (2016) Folate-conjugated pH-responsive nanocarrier designed for active tumor targeting and controlled release of gemcitabine. Pharm Res 33(2):417–432 Pourjavadi A, Tehrani ZM, Moghanaki AA (2016) Folate-conjugated pH-responsive nanocarrier designed for active tumor targeting and controlled release of gemcitabine. Pharm Res 33(2):417–432
79.
go back to reference Yalçın S, Erkan M, Ünsoy G, Parsian M, Kleeff J, Gündüz U (2014) Effect of gemcitabine and retinoic acid loaded PAMAM dendrimer-coated magnetic nanoparticles on pancreatic cancer and stellate cell lines. Biomed Pharmacother 68(6):737–743 Yalçın S, Erkan M, Ünsoy G, Parsian M, Kleeff J, Gündüz U (2014) Effect of gemcitabine and retinoic acid loaded PAMAM dendrimer-coated magnetic nanoparticles on pancreatic cancer and stellate cell lines. Biomed Pharmacother 68(6):737–743
80.
go back to reference Sztandera K, Gorzkiewicz M, Klajnert-Maculewicz B (2018) Gold nanoparticles in cancer treatment. Mol Pharm 16(1):1–23 Sztandera K, Gorzkiewicz M, Klajnert-Maculewicz B (2018) Gold nanoparticles in cancer treatment. Mol Pharm 16(1):1–23
81.
go back to reference Emamzadeh M, Pasparakis G (2021) Polymer coated gold nanoshells for combinational photochemotherapy of pancreatic cancer with gemcitabine. Sci Rep 11:9404 Emamzadeh M, Pasparakis G (2021) Polymer coated gold nanoshells for combinational photochemotherapy of pancreatic cancer with gemcitabine. Sci Rep 11:9404
82.
go back to reference Lin L, Fan Y, Gao F, Jin L, Li D, Sun W, Li F, Qin P, Shi Q, Shi X, Du L (2018) UTMD-promoted co-delivery of gemcitabine and miR-21 inhibitor by dendrimer-entrapped gold nanoparticles for pancreatic cancer therapy. Theranostics 8(7):1923 Lin L, Fan Y, Gao F, Jin L, Li D, Sun W, Li F, Qin P, Shi Q, Shi X, Du L (2018) UTMD-promoted co-delivery of gemcitabine and miR-21 inhibitor by dendrimer-entrapped gold nanoparticles for pancreatic cancer therapy. Theranostics 8(7):1923
84.
go back to reference Devi L, Gupta R, Jain SK, Singh S, Kesharwani P (2020) Synthesis, characterization and in vitro assessment of colloidal gold nanoparticles of gemcitabine with natural polysaccharides for treatment of breast cancer. J Drug Deliv Sci Technol 56:101565 Devi L, Gupta R, Jain SK, Singh S, Kesharwani P (2020) Synthesis, characterization and in vitro assessment of colloidal gold nanoparticles of gemcitabine with natural polysaccharides for treatment of breast cancer. J Drug Deliv Sci Technol 56:101565
85.
go back to reference Guemei AA, Dessouky E, Shalaby TI, Amer SK, Nassra R (2021) Study of the efficacy and multidrug resistance using gold nanoparticles-based drug delivery versus conventional chemotherapy in non-small-cell lung cancer cell line. Res Oncol 17(2):42–50 Guemei AA, Dessouky E, Shalaby TI, Amer SK, Nassra R (2021) Study of the efficacy and multidrug resistance using gold nanoparticles-based drug delivery versus conventional chemotherapy in non-small-cell lung cancer cell line. Res Oncol 17(2):42–50
86.
go back to reference Waghmare MN, Qureshi TS, Krishna CM, Pansare K, Gadewal N, Hole A, Dongre PM (2022) β-Lactoglobulin-gold nanoparticles interface and its interaction with some anticancer drugs–an approach for targeted drug delivery. J Biomol Struct Dyn 40(13):6193–6210 Waghmare MN, Qureshi TS, Krishna CM, Pansare K, Gadewal N, Hole A, Dongre PM (2022) β-Lactoglobulin-gold nanoparticles interface and its interaction with some anticancer drugs–an approach for targeted drug delivery. J Biomol Struct Dyn 40(13):6193–6210
87.
go back to reference Waghmare MN, Qureshi TS, Shaikh AN, Khade BS, Murali Krishna C, Dongre PM (2020) Functionalized alpha-lactalbumin conjugated with gold nanoparticle for targeted drug delivery. Chem Select 5(6):2035–2049 Waghmare MN, Qureshi TS, Shaikh AN, Khade BS, Murali Krishna C, Dongre PM (2020) Functionalized alpha-lactalbumin conjugated with gold nanoparticle for targeted drug delivery. Chem Select 5(6):2035–2049
88.
go back to reference Huai Y, Zhang Y, Xiong X, Das S, Bhattacharya R, Mukherjee P (2019) Gold nanoparticles sensitize pancreatic cancer cells to gemcitabine. Cell Stress 3(8):267 Huai Y, Zhang Y, Xiong X, Das S, Bhattacharya R, Mukherjee P (2019) Gold nanoparticles sensitize pancreatic cancer cells to gemcitabine. Cell Stress 3(8):267
89.
go back to reference Wang Z, Chen L, Chu Z, Huang C, Huang Y, Jia N (2018) Gemcitabine-loaded gold nanospheres mediated by albumin for enhanced anti-tumor activity combining with CT imaging. Mater Sci Eng C 89:106–118 Wang Z, Chen L, Chu Z, Huang C, Huang Y, Jia N (2018) Gemcitabine-loaded gold nanospheres mediated by albumin for enhanced anti-tumor activity combining with CT imaging. Mater Sci Eng C 89:106–118
91.
go back to reference Pal K, Al-Suraih F, Gonzalez-Rodriguez R, Dutta SK, Wang E, Kwak HS, Caulfield TR, Coffer JL, Bhattacharya S (2017) Multifaceted peptide assisted one-pot synthesis of gold nanoparticles for plectin-1 targeted gemcitabine delivery in pancreatic cancer. Nanoscale 9(40):15622–15634 Pal K, Al-Suraih F, Gonzalez-Rodriguez R, Dutta SK, Wang E, Kwak HS, Caulfield TR, Coffer JL, Bhattacharya S (2017) Multifaceted peptide assisted one-pot synthesis of gold nanoparticles for plectin-1 targeted gemcitabine delivery in pancreatic cancer. Nanoscale 9(40):15622–15634
92.
go back to reference Rhamani S, Chaix A, Aggad D, Hoang P, Moosa B, Garcia M, Gary-Bobo M, Charnay C, Almalik A, Durand JO, Khashab NM. Gold core mesoporous organosilica shell degradable nanoparticles for two-photon imaging and gemcitabine monophosphate delivery 2017. Rhamani S, Chaix A, Aggad D, Hoang P, Moosa B, Garcia M, Gary-Bobo M, Charnay C, Almalik A, Durand JO, Khashab NM. Gold core mesoporous organosilica shell degradable nanoparticles for two-photon imaging and gemcitabine monophosphate delivery 2017.
93.
go back to reference Pooja D, Panyaram S, Kulhari H, Reddy B, Rachamalla SS, Sistla R (2015) Natural polysaccharide functionalized gold nanoparticles as biocompatible drug delivery carrier. Int J Biol Macromol 80:48–56 Pooja D, Panyaram S, Kulhari H, Reddy B, Rachamalla SS, Sistla R (2015) Natural polysaccharide functionalized gold nanoparticles as biocompatible drug delivery carrier. Int J Biol Macromol 80:48–56
94.
go back to reference Raoof M, Corr SJ, Zhu C, Cisneros BT, Kaluarachchi WD, Phounsavath S, Wilson LJ, Curley SA (2014) Gold nanoparticles and radiofrequency in experimental models for hepatocellular carcinoma. Nanomed Nanotechnol Biol Med 10(6):1121–1130 Raoof M, Corr SJ, Zhu C, Cisneros BT, Kaluarachchi WD, Phounsavath S, Wilson LJ, Curley SA (2014) Gold nanoparticles and radiofrequency in experimental models for hepatocellular carcinoma. Nanomed Nanotechnol Biol Med 10(6):1121–1130
95.
go back to reference Singh R, Deshmukh R (2022) Carbon nanotube as an emerging theranostic tool for oncology. J Drug Deliv Sci Technol:103586 Singh R, Deshmukh R (2022) Carbon nanotube as an emerging theranostic tool for oncology. J Drug Deliv Sci Technol:103586
97.
go back to reference Das S, Desai JL, Thakkar HP (2013) Gemcitabine hydrochloride-loaded functionalised carbon nanotubes as potential carriers for tumour targeting. Indian J Pharm Sci 75(6):707–715 Das S, Desai JL, Thakkar HP (2013) Gemcitabine hydrochloride-loaded functionalised carbon nanotubes as potential carriers for tumour targeting. Indian J Pharm Sci 75(6):707–715
98.
go back to reference Razzazan A, Atyabi F, Kazemi B, Dinarvand R (2016) Influence of PEG molecular weight on the drug release and in vitro cytotoxicity of single-walled carbon nanotubes-PEG-gemcitabine conjugates. Curr Drug Deliv 13(8):1313–1324 Razzazan A, Atyabi F, Kazemi B, Dinarvand R (2016) Influence of PEG molecular weight on the drug release and in vitro cytotoxicity of single-walled carbon nanotubes-PEG-gemcitabine conjugates. Curr Drug Deliv 13(8):1313–1324
99.
go back to reference Zhang P, Yi W, Hou J, Yoo S, Jin W, Yang Q (2018) A carbon nanotube-gemcitabine-lentinan three-component composite for chemo-photothermal synergistic therapy of cancer. Int J Nanomed 13:3069–3080 Zhang P, Yi W, Hou J, Yoo S, Jin W, Yang Q (2018) A carbon nanotube-gemcitabine-lentinan three-component composite for chemo-photothermal synergistic therapy of cancer. Int J Nanomed 13:3069–3080
100.
go back to reference Yang F, Jin C, Yang D, Jiang Y, Li J, Di Y, Hu J, Wang C, Ni Q, Fu D (2011) Magnetic functionalised carbon nanotubes as drug vehicles for cancer lymph node metastasis treatment. Eur J Cancer 47(12):1873–1882 Yang F, Jin C, Yang D, Jiang Y, Li J, Di Y, Hu J, Wang C, Ni Q, Fu D (2011) Magnetic functionalised carbon nanotubes as drug vehicles for cancer lymph node metastasis treatment. Eur J Cancer 47(12):1873–1882
103.
go back to reference Nigam P, Waghmode S, Louis M, Wangnoo S, Chavan P, Sarkar D (2014) Graphene quantum dots conjugated albumin nanoparticles for targeted drug delivery and imaging of pancreatic cancer. J Mater Chem B 2(21):3190–3195 Nigam P, Waghmode S, Louis M, Wangnoo S, Chavan P, Sarkar D (2014) Graphene quantum dots conjugated albumin nanoparticles for targeted drug delivery and imaging of pancreatic cancer. J Mater Chem B 2(21):3190–3195
104.
go back to reference Samimi S, Ardestani MS, Dorkoosh FA (2021) Preparation of carbon quantum dots-quinic acid for drug delivery of gemcitabine to breast cancer cells. J Drug Deliv Sci Technol 61:102287 Samimi S, Ardestani MS, Dorkoosh FA (2021) Preparation of carbon quantum dots-quinic acid for drug delivery of gemcitabine to breast cancer cells. J Drug Deliv Sci Technol 61:102287
106.
go back to reference Campbell E, Hasan MT, Gonzalez Rodriguez R, Akkaraju GR, Naumov AV (2019) Doped graphene quantum dots for intracellular multicolor imaging and cancer detection. ACS Biomater Sci Eng 5(9):4671–4682 Campbell E, Hasan MT, Gonzalez Rodriguez R, Akkaraju GR, Naumov AV (2019) Doped graphene quantum dots for intracellular multicolor imaging and cancer detection. ACS Biomater Sci Eng 5(9):4671–4682
108.
go back to reference Vono M, Cosco D, Celia C et al (2010) In vitro evaluation of the activity of gemcitabine-loaded pegylated unilamellar liposomes against papillary thyroid cancer cells. Open Drug Deliv J 4:55–62 Vono M, Cosco D, Celia C et al (2010) In vitro evaluation of the activity of gemcitabine-loaded pegylated unilamellar liposomes against papillary thyroid cancer cells. Open Drug Deliv J 4:55–62
109.
go back to reference Paolino D, Cosco D, Racanicchi L et al (2010) Gemcitabine-loaded PEGylated unilamellar liposomes vs GEMZAR: biodistribution, pharmacokinetic features and in vivo antitumor activity. J Control Release 144(2):144–150 Paolino D, Cosco D, Racanicchi L et al (2010) Gemcitabine-loaded PEGylated unilamellar liposomes vs GEMZAR: biodistribution, pharmacokinetic features and in vivo antitumor activity. J Control Release 144(2):144–150
110.
go back to reference Affram K, Udofot O, Agyare E (2015) Cytotoxicity of gemcitabine-loaded thermosensitive liposomes in pancreatic cancer cell lines. Integr Cancer Sci Ther 2(2):133 Affram K, Udofot O, Agyare E (2015) Cytotoxicity of gemcitabine-loaded thermosensitive liposomes in pancreatic cancer cell lines. Integr Cancer Sci Ther 2(2):133
111.
go back to reference Kim DH, Im BN, Hwang HS, Na K (2018) Gemcitabine-loaded DSPE-PEG-PheoA liposome as a photomediated immune modulator for cholangiocarcinoma treatment. Biomaterials 183:139–150 Kim DH, Im BN, Hwang HS, Na K (2018) Gemcitabine-loaded DSPE-PEG-PheoA liposome as a photomediated immune modulator for cholangiocarcinoma treatment. Biomaterials 183:139–150
113.
go back to reference Emamzadeh M, Emamzadeh M, Pasparakis G (2019) Dual controlled delivery of gemcitabine and cisplatin using polymer-modified thermosensitive liposomes for pancreatic cancer. ACS Appl Bio Mater 2(3):1298–1309 Emamzadeh M, Emamzadeh M, Pasparakis G (2019) Dual controlled delivery of gemcitabine and cisplatin using polymer-modified thermosensitive liposomes for pancreatic cancer. ACS Appl Bio Mater 2(3):1298–1309
115.
go back to reference Wang F, Zhang Z (2020) Nanoformulation of apolipoprotein E3-tagged liposomal nanoparticles for the co-delivery of KRAS-siRNA and gemcitabine for pancreatic cancer treatment. Pharm Res 37:1–11 Wang F, Zhang Z (2020) Nanoformulation of apolipoprotein E3-tagged liposomal nanoparticles for the co-delivery of KRAS-siRNA and gemcitabine for pancreatic cancer treatment. Pharm Res 37:1–11
116.
go back to reference Bulanadi JC, Xue A, Gong X, Bean PA, Julovi SM, De Campo L, Smith RC, Moghaddam MJ (2020) Biomimetic gemcitabine–lipid prodrug nanoparticles for pancreatic cancer. ChemPlusChem 85:1283–1291 Bulanadi JC, Xue A, Gong X, Bean PA, Julovi SM, De Campo L, Smith RC, Moghaddam MJ (2020) Biomimetic gemcitabine–lipid prodrug nanoparticles for pancreatic cancer. ChemPlusChem 85:1283–1291
117.
go back to reference Seleci DA, Seleci M, Walter J-G, Stahl F, Scheper T (2016) Niosomes as nanoparticular drug carriers: fundamentals and recent applications. J Nanomater 2016:1–13 Seleci DA, Seleci M, Walter J-G, Stahl F, Scheper T (2016) Niosomes as nanoparticular drug carriers: fundamentals and recent applications. J Nanomater 2016:1–13
118.
go back to reference Maniam G (2019) Preparation, characterization and anti-pancreatic cancer effects of gemcitabine-tocotrienols entrapped niosomes. Ph.D. Thesis, International Medical University, Kuala Lumpur, Malaysia Maniam G (2019) Preparation, characterization and anti-pancreatic cancer effects of gemcitabine-tocotrienols entrapped niosomes. Ph.D. Thesis, International Medical University, Kuala Lumpur, Malaysia
119.
go back to reference Saimi NM, Salim N, Ahmad N, Abdulmalek E, Rahman MA (2021) Aerosolized niosome formulation containing gemcitabine and cisplatin for lung cancer treatment: optimization, characterization and in vitro evaluation. Pharmaceutics 13:59 Saimi NM, Salim N, Ahmad N, Abdulmalek E, Rahman MA (2021) Aerosolized niosome formulation containing gemcitabine and cisplatin for lung cancer treatment: optimization, characterization and in vitro evaluation. Pharmaceutics 13:59
120.
122.
go back to reference Mohammadi-Samani S, Ghasemiyeh P (2018) Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: applications, advantages and disadvantages. Res Pharm Sci 13:288–303 Mohammadi-Samani S, Ghasemiyeh P (2018) Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: applications, advantages and disadvantages. Res Pharm Sci 13:288–303
123.
go back to reference Wauthoz N, Bastiat G, Moysan E, Cieslak A, Kondo K, Zandecki M, Moal V, Rousselet MC, Hureaux J, Benoit JP (2015) Safe lipid nanocapsule-based gel technology to target lymph nodes and combat mediastinal metastases from an orthotopic non-small-cell lung cancer model in SCID-CB17 mice. Nanomed Nanotechnol Biol Med 11(5):1237–1245 Wauthoz N, Bastiat G, Moysan E, Cieslak A, Kondo K, Zandecki M, Moal V, Rousselet MC, Hureaux J, Benoit JP (2015) Safe lipid nanocapsule-based gel technology to target lymph nodes and combat mediastinal metastases from an orthotopic non-small-cell lung cancer model in SCID-CB17 mice. Nanomed Nanotechnol Biol Med 11(5):1237–1245
124.
go back to reference Nandini PT, Doijad RC, Shivakumar HN, Dandagi PM (2015) Formulation and evaluation of gemcitabine-loaded solid lipid nanoparticles. Drug Deliv 22:647–651 Nandini PT, Doijad RC, Shivakumar HN, Dandagi PM (2015) Formulation and evaluation of gemcitabine-loaded solid lipid nanoparticles. Drug Deliv 22:647–651
125.
go back to reference Soni N, Soni N, Ramteke PW, Pandey H (2018) A validated RP-HPLC assay method for determination of gemcitabine loaded nanosized solid lipid nanoparticles. J Drug Deliv Ther 8:308–313 Soni N, Soni N, Ramteke PW, Pandey H (2018) A validated RP-HPLC assay method for determination of gemcitabine loaded nanosized solid lipid nanoparticles. J Drug Deliv Ther 8:308–313
126.
go back to reference Wang C, Zheng Y, Oval MAS, Valdes SA, Chen Z, Lansakara-P DS, Du M, Shi Y, Cui Z (2017) Oral 4-(N)-stearoyl gemcitabine nanoparticles inhibit tumor growth in mouse models. Oncotarget 8:89876–89886 Wang C, Zheng Y, Oval MAS, Valdes SA, Chen Z, Lansakara-P DS, Du M, Shi Y, Cui Z (2017) Oral 4-(N)-stearoyl gemcitabine nanoparticles inhibit tumor growth in mouse models. Oncotarget 8:89876–89886
127.
go back to reference Chen Z, Zheng Y, Shi Y, Cui Z (2018) Overcoming tumor cell chemoresistance using nanoparticles: lysosomes are beneficial for (stearoyl) gemcitabine-incorporated solid lipid nanoparticles. Int J Nanomedicine 13:319–336 Chen Z, Zheng Y, Shi Y, Cui Z (2018) Overcoming tumor cell chemoresistance using nanoparticles: lysosomes are beneficial for (stearoyl) gemcitabine-incorporated solid lipid nanoparticles. Int J Nanomedicine 13:319–336
128.
go back to reference Affram KO, Smith T, Ofori E, Krishnan S, Underwood P, Trevino JG, Agyare E (2020) Cytotoxic effects of gemcitabine-loaded solid lipid nanoparticles in pancreatic cancer cells. J Drug Deliv Sci Technol 55:101374 Affram KO, Smith T, Ofori E, Krishnan S, Underwood P, Trevino JG, Agyare E (2020) Cytotoxic effects of gemcitabine-loaded solid lipid nanoparticles in pancreatic cancer cells. J Drug Deliv Sci Technol 55:101374
129.
go back to reference Unnam S, Panduragaiah VM, Sidramappa MA, Muddana Eswara BR (2019) Gemcitabine-loaded folic acid tagged liposomes: improved pharmacokinetic and biodistribution profile. Current Drug Deliv 16(2):111–122 Unnam S, Panduragaiah VM, Sidramappa MA, Muddana Eswara BR (2019) Gemcitabine-loaded folic acid tagged liposomes: improved pharmacokinetic and biodistribution profile. Current Drug Deliv 16(2):111–122
131.
go back to reference Wang C, Zheng Y, Sand Oval MA, Valdes SA, Chen Z, Lansakara-P DS, Du M, Shi Y, Cui Z (2017) Oral 4-(N)-stearoyl gemcitabine nanoparticles inhibit tumor growth in mouse models. Oncotarget 8(52):89876–89886 Wang C, Zheng Y, Sand Oval MA, Valdes SA, Chen Z, Lansakara-P DS, Du M, Shi Y, Cui Z (2017) Oral 4-(N)-stearoyl gemcitabine nanoparticles inhibit tumor growth in mouse models. Oncotarget 8(52):89876–89886
133.
go back to reference Mokashi AS, Jadhav NR, Rooge SB (2012) Design, development and characterization of solid lipid nanoparticles of gemcitabine hydrochloride. Drug Deliv Lett 2(4):262–269 Mokashi AS, Jadhav NR, Rooge SB (2012) Design, development and characterization of solid lipid nanoparticles of gemcitabine hydrochloride. Drug Deliv Lett 2(4):262–269
135.
go back to reference Hoy SM (2014) Albumin-bound paclitaxel: a review of its use for the first-line combination treatment of metastatic pancreatic cancer. Drugs 74:1757–1768 Hoy SM (2014) Albumin-bound paclitaxel: a review of its use for the first-line combination treatment of metastatic pancreatic cancer. Drugs 74:1757–1768
Metadata
Title
Assessment of gemcitabine hydrochloride-based nanotherapeutics in cancer: a proof of concept study
Authors
Laxmi Devi
Tarique Mahmood Ansari
Ashish Kumar
Poonam Kushwaha
Publication date
01-06-2023
Publisher
Springer Netherlands
Published in
Journal of Nanoparticle Research / Issue 6/2023
Print ISSN: 1388-0764
Electronic ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-023-05764-9

Other articles of this Issue 6/2023

Journal of Nanoparticle Research 6/2023 Go to the issue

Premium Partners