Skip to main content
Top
Published in: Cellulose 4/2017

04-02-2017 | Original Paper

Association of amphipathic lignin derivatives with cellobiohydrolase groups improves enzymatic saccharification of lignocellulosics

Authors: Yoko Yamamoto, Ningning Cheng, Keiichi Koda, Kiyohiko Igarashi, Yutaka Tamai, Yasumitsu Uraki

Published in: Cellulose | Issue 4/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Amphipathic lignin derivatives (ALDs), prepared from hardwood acetic acid lignin and softwood soda lignin via coupling with a mono-epoxylated polyethylene glycol, have been reported to improve the enzymatic saccharification efficiency of lignocellulose while maintaining significant residual cellulase activity after saccharification. We previously demonstrated that the effect of ALDs was caused by a direct interaction between ALDs and Cel6A (or CBH II). In this study, a different ALD was prepared from softwood kraft lignin in addition to aforementioned ALDs. The interactions between all the ALDs and the enzymes other than Cel6A, such as Cel7A and Cel7B, in a cellulase cocktail were investigated using surface plasmon resonance. The kraft lignin-based ALD showed the highest residual cellulase activity among all ALDs and an improved cellulolytic enzyme efficiency similar to those of the other ALDs. All ALDs were found to directly associate with major enzymes in the cellulase cocktail, Cel6A and Cel7A (or CBH I), but not with Cel7B (or EG I). In addition, the ALDs showed a much higher affinity to amino groups than to hydroxy and carboxy groups. In contrast, polyethylene glycol (molecular mass 4000 Da), one part of the ALD and a previously reported enzymatic saccharification enhancer, did not adsorb onto any enzymes in the cellulase cocktail or the amino group. Size exclusion chromatography demonstrated that the ALDs formed self-aggregates in both water and chloroform; the formation process in the latter was especially unique. Therefore, we conclude that the high residual cellulase activity is attributed to the direct association of ALD aggregates with the CBH group.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
go back to reference Adney B, Baker J (2008) Measurement of cellulase activities. In: Laboratory analytical procedure, technical report NREL/TP-510-42628. National Renewable Energy Laboratory Adney B, Baker J (2008) Measurement of cellulase activities. In: Laboratory analytical procedure, technical report NREL/TP-510-42628. National Renewable Energy Laboratory
go back to reference Aso T, Koda K, Kubo S, Yamada T, Nakajima I, Uraki Y (2013) Preparation of novel lignin-based cement dispersants from isolated lignins. J Wood Chem Technol 33:286–298CrossRef Aso T, Koda K, Kubo S, Yamada T, Nakajima I, Uraki Y (2013) Preparation of novel lignin-based cement dispersants from isolated lignins. J Wood Chem Technol 33:286–298CrossRef
go back to reference Biacore (2008) Sensor surface handbook. BR-1005-71 edition AB, GE healthcare. Uppsala, Sweden, May 2008, pp 39–41, 44–47 Biacore (2008) Sensor surface handbook. BR-1005-71 edition AB, GE healthcare. Uppsala, Sweden, May 2008, pp 39–41, 44–47
go back to reference Börjesson J, Engqvist M, Sipos B, Tjerneld F (2007a) Effect of poly (ethylene glycol) on enzymatic hydrolysis and adsorption of cellulase enzymes to pretreated lignocellulose. Enzyme Microb Technol 41:186–195CrossRef Börjesson J, Engqvist M, Sipos B, Tjerneld F (2007a) Effect of poly (ethylene glycol) on enzymatic hydrolysis and adsorption of cellulase enzymes to pretreated lignocellulose. Enzyme Microb Technol 41:186–195CrossRef
go back to reference Börjesson J, Peterson R, Tjerneld F (2007b) Enhanced enzymatic conversion of softwood lignocellulose by poly(ethylene glycol) addition. Enzyme Microb Technol 40:754–762CrossRef Börjesson J, Peterson R, Tjerneld F (2007b) Enhanced enzymatic conversion of softwood lignocellulose by poly(ethylene glycol) addition. Enzyme Microb Technol 40:754–762CrossRef
go back to reference Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRef Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRef
go back to reference Braslau N, Gunn JB, Staples JL (1967) Metal-semiconductor contacts for GaAs bulk effect devices. Solid-State Electron 10:381–383CrossRef Braslau N, Gunn JB, Staples JL (1967) Metal-semiconductor contacts for GaAs bulk effect devices. Solid-State Electron 10:381–383CrossRef
go back to reference Cheng N, Yamamoto Y, Koda K, Tamai Y, Uraki Y (2014) Amphipathic lignin derivatives to accelerate simultaneous saccharification and fermentation of unbleached softwood pulp for bioethanol production. Bioresour Technol 173:104–109CrossRef Cheng N, Yamamoto Y, Koda K, Tamai Y, Uraki Y (2014) Amphipathic lignin derivatives to accelerate simultaneous saccharification and fermentation of unbleached softwood pulp for bioethanol production. Bioresour Technol 173:104–109CrossRef
go back to reference Davies G, Henrissat B (1995) Structures and mechanisms of glycosyl hydrolases. Structure 3:853–859CrossRef Davies G, Henrissat B (1995) Structures and mechanisms of glycosyl hydrolases. Structure 3:853–859CrossRef
go back to reference Deshpande MV, Eriksson KE, Pettersson LG (1984) An assay for selective determination of exo-1,4,-bata-glucanases in mixture of cellulolytic enzymes. Anal Biochem 138:481–487CrossRef Deshpande MV, Eriksson KE, Pettersson LG (1984) An assay for selective determination of exo-1,4,-bata-glucanases in mixture of cellulolytic enzymes. Anal Biochem 138:481–487CrossRef
go back to reference Deshpandet MV, Eriksson KE (1984) Reutilization of enzymes for saccharification of lignocellulosic materials. Enzyme Microb Technol 6:338–340CrossRef Deshpandet MV, Eriksson KE (1984) Reutilization of enzymes for saccharification of lignocellulosic materials. Enzyme Microb Technol 6:338–340CrossRef
go back to reference Dong D, Fricke AL (1995) Intrinsic viscosity and the molecular weight of kraft lignin. Polymer 36:2075–2078CrossRef Dong D, Fricke AL (1995) Intrinsic viscosity and the molecular weight of kraft lignin. Polymer 36:2075–2078CrossRef
go back to reference Egusa S, Kitaoka T, Igarashi K, Samejima M, Goto M, Wariishi H (2010) Preparation and enzymatic behavior of sufactant-enveloped enzymes for glycosynthesis in nonaqueous aprotic media. J Mol Catal B Enzym 67:225–230CrossRef Egusa S, Kitaoka T, Igarashi K, Samejima M, Goto M, Wariishi H (2010) Preparation and enzymatic behavior of sufactant-enveloped enzymes for glycosynthesis in nonaqueous aprotic media. J Mol Catal B Enzym 67:225–230CrossRef
go back to reference Eriksson T, Börjesson J, Tjerneld F (2002) Mechanism of surfactant effect in enzymatic hydrolysis of lignocellulose. Enzyme Microb Technol 31:353–364CrossRef Eriksson T, Börjesson J, Tjerneld F (2002) Mechanism of surfactant effect in enzymatic hydrolysis of lignocellulose. Enzyme Microb Technol 31:353–364CrossRef
go back to reference Glasser WG, Dave V, Frazier CE (1993) Molecular weight distribution of (Semi-) commercial lignin derivatives. J Wood Chem Technol 13:545–559CrossRef Glasser WG, Dave V, Frazier CE (1993) Molecular weight distribution of (Semi-) commercial lignin derivatives. J Wood Chem Technol 13:545–559CrossRef
go back to reference Goring DAI (1971) Polymer properties of lignin and lignin derivatives. In: Sarkanen KV, Ludwig CH (eds) Lignins. Wiley, New York, pp 695–768 Goring DAI (1971) Polymer properties of lignin and lignin derivatives. In: Sarkanen KV, Ludwig CH (eds) Lignins. Wiley, New York, pp 695–768
go back to reference Granata A, Argyropoulos DS (1995) 2-Chloro-4,4,5,5-tetramethyl-1,3,2-dioxaphospholane, a reagent for the accurate determination of the uncondensed and condensed phenolic moieties in Lignins. J Agric Food Chem 43:1538–1544CrossRef Granata A, Argyropoulos DS (1995) 2-Chloro-4,4,5,5-tetramethyl-1,3,2-dioxaphospholane, a reagent for the accurate determination of the uncondensed and condensed phenolic moieties in Lignins. J Agric Food Chem 43:1538–1544CrossRef
go back to reference Homma H, Kubo S, Yamada T, Matsushita Y, Uraki Y (2008) Preparation and characterization of amphiphilic lignin derivatives as surfactants. J Wood Chem Technol 28:270–282CrossRef Homma H, Kubo S, Yamada T, Matsushita Y, Uraki Y (2008) Preparation and characterization of amphiphilic lignin derivatives as surfactants. J Wood Chem Technol 28:270–282CrossRef
go back to reference Homma H, Kubo S, Yamada T, Koda K, Matsushita Y, Uraki Y (2010) Conversion of technical lignins to amphiphilic derivatives with high surface activity. J Wood Chem Technol 30:164–174CrossRef Homma H, Kubo S, Yamada T, Koda K, Matsushita Y, Uraki Y (2010) Conversion of technical lignins to amphiphilic derivatives with high surface activity. J Wood Chem Technol 30:164–174CrossRef
go back to reference Kamm B, Kamm M (2004) Principles of biorefineries. Appl Microbiol Biotechnol 64:137–145CrossRef Kamm B, Kamm M (2004) Principles of biorefineries. Appl Microbiol Biotechnol 64:137–145CrossRef
go back to reference Kristensen JB, Börjesson J, Bruun MH, Tjerneld F, Jorgensen H (2007) Use of surface active additives in enzymatic hydrolysis of wheat straw lignocellulose. Enzyme Microb Technol 40:888–895CrossRef Kristensen JB, Börjesson J, Bruun MH, Tjerneld F, Jorgensen H (2007) Use of surface active additives in enzymatic hydrolysis of wheat straw lignocellulose. Enzyme Microb Technol 40:888–895CrossRef
go back to reference Lai C, Tu M, Shi Z, Zheng K, Olmos LG, Yu S (2014) Contrasting effects of hardwood and softwood organosolv lignins on enzymatic hydrolysis of lignocellulose. Bioresour Technol 163:320–327CrossRef Lai C, Tu M, Shi Z, Zheng K, Olmos LG, Yu S (2014) Contrasting effects of hardwood and softwood organosolv lignins on enzymatic hydrolysis of lignocellulose. Bioresour Technol 163:320–327CrossRef
go back to reference Lin X, Qiu X, Zhu D, Li Z, Zhan N, Zheng J, Lou H, Zhou M, Yang D (2015a) Effect of the molecular structure of lignin-based polyoxyethylene ether on enzymatic hydrolysis efficiency and kinetics of lignocelluloses. Bioresour Technol 193:266–273CrossRef Lin X, Qiu X, Zhu D, Li Z, Zhan N, Zheng J, Lou H, Zhou M, Yang D (2015a) Effect of the molecular structure of lignin-based polyoxyethylene ether on enzymatic hydrolysis efficiency and kinetics of lignocelluloses. Bioresour Technol 193:266–273CrossRef
go back to reference Lin X, Qiu X, Yuan L, Li Z, Lou H, Zhou M, Yang D (2015b) Lignin-based polyoxyethylene ether enhanced enzymatic hydrolysis of lignocelluloses by dispersing cellulase aggregates. Bioresour Technol 185:165–170CrossRef Lin X, Qiu X, Yuan L, Li Z, Lou H, Zhou M, Yang D (2015b) Lignin-based polyoxyethylene ether enhanced enzymatic hydrolysis of lignocelluloses by dispersing cellulase aggregates. Bioresour Technol 185:165–170CrossRef
go back to reference Lou H, Wang M, Lai H, Lin X, Zhou M, Yang D, Qiu X (2013) Reducing non-productive adsorption of cellulase and enhancing enzymatic hydrolysis of lignocelluloses by noncovalent modification of lignin with lignosulfonate. Bioresour Technol 146:478–484CrossRef Lou H, Wang M, Lai H, Lin X, Zhou M, Yang D, Qiu X (2013) Reducing non-productive adsorption of cellulase and enhancing enzymatic hydrolysis of lignocelluloses by noncovalent modification of lignin with lignosulfonate. Bioresour Technol 146:478–484CrossRef
go back to reference Ma JC, Dougherty DA (1997) The cation-π interaction. Chem Rev 97:1303–1324CrossRef Ma JC, Dougherty DA (1997) The cation-π interaction. Chem Rev 97:1303–1324CrossRef
go back to reference Mahadevi AS, Sastry GN (2013) Cation-π interaction: its role and relevance in chemistry, biology, and material science. Chem Rev 113:2100–2138CrossRef Mahadevi AS, Sastry GN (2013) Cation-π interaction: its role and relevance in chemistry, biology, and material science. Chem Rev 113:2100–2138CrossRef
go back to reference Morgan PW (1946) Determination of ethers and esters of ethylene glycol. Ind Eng Chem Anal Ed 18:500–504CrossRef Morgan PW (1946) Determination of ethers and esters of ethylene glycol. Ind Eng Chem Anal Ed 18:500–504CrossRef
go back to reference Nakagame S, Chandra RP, Kadla JF, Saddler JN (2011) Enhancing the enzymatic hydrolysis of lignocellulosic biomass by increasing the carboxylic acid content of the associated lignin. Biotechnol Bioeng 108(3):538–548CrossRef Nakagame S, Chandra RP, Kadla JF, Saddler JN (2011) Enhancing the enzymatic hydrolysis of lignocellulosic biomass by increasing the carboxylic acid content of the associated lignin. Biotechnol Bioeng 108(3):538–548CrossRef
go back to reference Oliveira W, Glasser WG (1994) Multiphase materials with lignin. 11. starlike copolymers with caprolactone. Macromolecules 27:5–11CrossRef Oliveira W, Glasser WG (1994) Multiphase materials with lignin. 11. starlike copolymers with caprolactone. Macromolecules 27:5–11CrossRef
go back to reference Palonen H, Tjerneld F, Zacchi G, Tenkanen M (2004) Adsorption of Trichoderma reesei CBH I and EG II and their catalytic domains on steam pretreated softwood and isolated lignin. J Biotechnol 107:65–72CrossRef Palonen H, Tjerneld F, Zacchi G, Tenkanen M (2004) Adsorption of Trichoderma reesei CBH I and EG II and their catalytic domains on steam pretreated softwood and isolated lignin. J Biotechnol 107:65–72CrossRef
go back to reference Park JM, Takahata Y, Kajiuchi T, Akehata T (1992) Effect of nonionic surfactant on enzymatic hydrolysis of used newspaper. Biotechnol Bioeng 39:117–120CrossRef Park JM, Takahata Y, Kajiuchi T, Akehata T (1992) Effect of nonionic surfactant on enzymatic hydrolysis of used newspaper. Biotechnol Bioeng 39:117–120CrossRef
go back to reference Reddy AS, Sastry GN (2005) Cation [M = H+, Li+, Na+, K+, Ca2+, Mg2+, NH4+, and NMe4+] interactions with the aromatic motifs of naturally occurring amino acids: a theoretical study. J Phys Chem A 109:8893–8903CrossRef Reddy AS, Sastry GN (2005) Cation [M = H+, Li+, Na+, K+, Ca2+, Mg2+, NH4+, and NMe4+] interactions with the aromatic motifs of naturally occurring amino acids: a theoretical study. J Phys Chem A 109:8893–8903CrossRef
go back to reference Seo DJ, Fujita H, Sakoda A (2011) Effects of a non-ionic surfactant, tween 20, on adsorption/desorption of saccharification enzymes onto/from lignocelluloses and saccharification rate. Adsorption 17:813–822CrossRef Seo DJ, Fujita H, Sakoda A (2011) Effects of a non-ionic surfactant, tween 20, on adsorption/desorption of saccharification enzymes onto/from lignocelluloses and saccharification rate. Adsorption 17:813–822CrossRef
go back to reference Siggia S, Starke AC, Stahl CR (1958) Determination of oxyalkylene groups: inglycols and glycol and polyglycol ethers and esters. Anal Chem 30:115–116CrossRef Siggia S, Starke AC, Stahl CR (1958) Determination of oxyalkylene groups: inglycols and glycol and polyglycol ethers and esters. Anal Chem 30:115–116CrossRef
go back to reference Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11CrossRef Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11CrossRef
go back to reference Teeri T, Henriksson G (2009) Enzymes degrading wood components. In: Pulp and paper chemistry and technology volume 1: wood chemistry and wood biotechnology. Berlin, Germany, pp 247–253 Teeri T, Henriksson G (2009) Enzymes degrading wood components. In: Pulp and paper chemistry and technology volume 1: wood chemistry and wood biotechnology. Berlin, Germany, pp 247–253
go back to reference Uraki Y, Sano Y, Sasaya T (1991) Cooking of hardwoods with organosolv pulping in aqueous acetic acid containing sulfuric acid at atmospheric pressure. Jpn Tappi J 45:1018–1024CrossRef Uraki Y, Sano Y, Sasaya T (1991) Cooking of hardwoods with organosolv pulping in aqueous acetic acid containing sulfuric acid at atmospheric pressure. Jpn Tappi J 45:1018–1024CrossRef
go back to reference Uraki Y, Ishikawa N, Nishida M, Sano Y (2001) Preparation of amphiphilic lignin derivatives as a cellulase stabilizer. J Wood Sci 47:301–307CrossRef Uraki Y, Ishikawa N, Nishida M, Sano Y (2001) Preparation of amphiphilic lignin derivatives as a cellulase stabilizer. J Wood Sci 47:301–307CrossRef
go back to reference Valentine J, Brown JC, Hastings A, Robson P, Allison G, Smith P (2012) Food vs. fuel: the use of land for lignocellulosic next generation energy crops that minimize competition with primary food production. GCB Bioenergy 4:1–19CrossRef Valentine J, Brown JC, Hastings A, Robson P, Allison G, Smith P (2012) Food vs. fuel: the use of land for lignocellulosic next generation energy crops that minimize competition with primary food production. GCB Bioenergy 4:1–19CrossRef
go back to reference Wang Z, Zhu J, Fu Y, Qin M, Shao Z, Jiang J, Yang F (2013) Lignosulfonate-mediated cellulase adsorption: enhanced enzymatic saccharification of lignocellulose through weakening nonproductive binding of lignin. Biotechnol Biofuels 6:156CrossRef Wang Z, Zhu J, Fu Y, Qin M, Shao Z, Jiang J, Yang F (2013) Lignosulfonate-mediated cellulase adsorption: enhanced enzymatic saccharification of lignocellulose through weakening nonproductive binding of lignin. Biotechnol Biofuels 6:156CrossRef
go back to reference Winarni I, Oikawa C, Yamada T, Igarashi K, Koda K, Uraki Y (2013) Improvement of enzymatic saccharification of unbleached cedar pulp with amphipathic lignin derivatives. Bioresources 8:2195–2208CrossRef Winarni I, Oikawa C, Yamada T, Igarashi K, Koda K, Uraki Y (2013) Improvement of enzymatic saccharification of unbleached cedar pulp with amphipathic lignin derivatives. Bioresources 8:2195–2208CrossRef
go back to reference Winarni I, Koda K, Waluyo TK, Pari G, Uraki Y (2014) Enzymatic saccharification of soda pulp from sago starch waste using sago lignin-based amphipathic derivatives. J Wood Chem Technol 34:157–168CrossRef Winarni I, Koda K, Waluyo TK, Pari G, Uraki Y (2014) Enzymatic saccharification of soda pulp from sago starch waste using sago lignin-based amphipathic derivatives. J Wood Chem Technol 34:157–168CrossRef
go back to reference Woodward J (1989) Immobilized cellulases for cellulose utilization. J Biotechnol 11:299–312CrossRef Woodward J (1989) Immobilized cellulases for cellulose utilization. J Biotechnol 11:299–312CrossRef
go back to reference Zhou H, Lou H, Yang D, Zhu JY, Qiu X (2013) Lignosulfonate to enhance enzymatic saccharification of lignocelluloses: role of molecular weight and substrate lignin. Ind Eng Chem Res 52:8464–8470CrossRef Zhou H, Lou H, Yang D, Zhu JY, Qiu X (2013) Lignosulfonate to enhance enzymatic saccharification of lignocelluloses: role of molecular weight and substrate lignin. Ind Eng Chem Res 52:8464–8470CrossRef
Metadata
Title
Association of amphipathic lignin derivatives with cellobiohydrolase groups improves enzymatic saccharification of lignocellulosics
Authors
Yoko Yamamoto
Ningning Cheng
Keiichi Koda
Kiyohiko Igarashi
Yutaka Tamai
Yasumitsu Uraki
Publication date
04-02-2017
Publisher
Springer Netherlands
Published in
Cellulose / Issue 4/2017
Print ISSN: 0969-0239
Electronic ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-017-1214-0

Other articles of this Issue 4/2017

Cellulose 4/2017 Go to the issue