Skip to main content
Top
Published in: Cellulose 4/2014

01-08-2014 | Original Paper

Atomic partial charges and one Lennard-Jones parameter crucial to model cellulose allomorphs

Authors: Pan Chen, Yoshiharu Nishiyama, Karim Mazeau

Published in: Cellulose | Issue 4/2014

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The influence of the non-bonded parameters, i.e., Lennard-Jones and the partial atomic charges, on the predicted unit cell dimensions of different allomorphs of cellulose were studied in the framework of the GROMOS force field. Systematic variation of partial atomic charges revealed the particular importance of charge distribution at the proximity of glycosidic linkage to the monoclinic angles. Furthermore, the unit cell parameters were better predicted when the repulsive term of the united atom CH1 (carbon atoms bearing one hydrogen) was optimized. The a-axis of cellulose Iβ was over estimated by more than 7 and 8.3 % in GROMOS-53A6 and GROMOS-56Acarbo respectively, but gave prediction within 0.2 % from experimental value, i.e. within experimental accuracy, when the CH1 repulsion term was optimized and CHARMM charge set was imported. At the same time, the average deviation from experimental values of the lattice parameters of four allomorphs was improved from 2.36 to 1.18 % for GROMOS-53a6 and from 2.53 to 1.75 % for GROMOS-56Acarbo.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
go back to reference Berendsen HJC, Postma JPM, Van Gunsteren WF, DiNola A, Haak JRJ (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690CrossRef Berendsen HJC, Postma JPM, Van Gunsteren WF, DiNola A, Haak JRJ (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690CrossRef
go back to reference Bergenstråhle M, Berglund LA, Mazeau K (2007) Thermal response in crystalline Iβ cellulose: a molecular dynamics study. J Phys Chem B 111:9138–9145CrossRef Bergenstråhle M, Berglund LA, Mazeau K (2007) Thermal response in crystalline Iβ cellulose: a molecular dynamics study. J Phys Chem B 111:9138–9145CrossRef
go back to reference Bučko T, Hafner J, Lebègue S, Ángyán JG (2010) Improved description of the structure of molecular and layered crystals: ab initio DFT calculations with van der Waals corrections. J Phys Chem A 114:11814–11824CrossRef Bučko T, Hafner J, Lebègue S, Ángyán JG (2010) Improved description of the structure of molecular and layered crystals: ab initio DFT calculations with van der Waals corrections. J Phys Chem A 114:11814–11824CrossRef
go back to reference Bučko T, Tunega D, Ángyán JG, Hafner J (2011) Ab initio study of structure and interconversion of native cellulose phases. J Phys Chem A 115:10097–10105CrossRef Bučko T, Tunega D, Ángyán JG, Hafner J (2011) Ab initio study of structure and interconversion of native cellulose phases. J Phys Chem A 115:10097–10105CrossRef
go back to reference Bussi G, Parrinello M (2007) Canonical sampling through velocity rescaling. J Chem Phys 126:14101–14107CrossRef Bussi G, Parrinello M (2007) Canonical sampling through velocity rescaling. J Chem Phys 126:14101–14107CrossRef
go back to reference Chen P, Nishiyama Y, Mazeau K (2012) Torsional entropy at the origin of the reversible temperature-induced phase transition of cellulose. Macromolecules 45(1):362–368CrossRef Chen P, Nishiyama Y, Mazeau K (2012) Torsional entropy at the origin of the reversible temperature-induced phase transition of cellulose. Macromolecules 45(1):362–368CrossRef
go back to reference Chen P, Nishiyama Y, Putaux J-L, Mazeau K (2014) Diversity of potential hydrogen bonds in cellulose I revealed by molecular dynamics simulation. Cellulose 21:897–908CrossRef Chen P, Nishiyama Y, Putaux J-L, Mazeau K (2014) Diversity of potential hydrogen bonds in cellulose I revealed by molecular dynamics simulation. Cellulose 21:897–908CrossRef
go back to reference Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N-log(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092CrossRef Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N-log(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092CrossRef
go back to reference Diddens I, Murphy B, Kirsch M, Müller M (2008) Anisotropic elastic properties of cellulose measured using inelastic X-ray scattering. Macromolecules 41:9755–9759CrossRef Diddens I, Murphy B, Kirsch M, Müller M (2008) Anisotropic elastic properties of cellulose measured using inelastic X-ray scattering. Macromolecules 41:9755–9759CrossRef
go back to reference Dunfield LG, Burgess AW, Scheraga HA (1978) Energy parameters in polypeptides 8: empirical potential energy algorithm for the conformational analysis of large molecules. J Phys Chem 82(24):2609–2616CrossRef Dunfield LG, Burgess AW, Scheraga HA (1978) Energy parameters in polypeptides 8: empirical potential energy algorithm for the conformational analysis of large molecules. J Phys Chem 82(24):2609–2616CrossRef
go back to reference Eichhorn SJ, Davies GR (2006) Modelling the crystalline deformation of native and regenerated cellulose. Cellulose 13:291–307CrossRef Eichhorn SJ, Davies GR (2006) Modelling the crystalline deformation of native and regenerated cellulose. Cellulose 13:291–307CrossRef
go back to reference Foley BL, Tessier MB, Woods RJ (2011) Carbohydrate force fields. Wiley Interdiscip. Rev Comput Mol Sci 2:652–697 Foley BL, Tessier MB, Woods RJ (2011) Carbohydrate force fields. Wiley Interdiscip. Rev Comput Mol Sci 2:652–697
go back to reference Gasteiger J, Marsili M (1980) Iterative partial equalization of orbital electronegativity: a rapid access to atomic charges. Tetrahedron 36(22):3219–3228CrossRef Gasteiger J, Marsili M (1980) Iterative partial equalization of orbital electronegativity: a rapid access to atomic charges. Tetrahedron 36(22):3219–3228CrossRef
go back to reference Guvench O, Hatcher E, Venable RM, Pastor RW, MacKerell AD (2009) CHARMM additive all-atom force field for glycosidic linkages between hexopyranoses. J Chem Theory Comput 5(9):2353–2370CrossRef Guvench O, Hatcher E, Venable RM, Pastor RW, MacKerell AD (2009) CHARMM additive all-atom force field for glycosidic linkages between hexopyranoses. J Chem Theory Comput 5(9):2353–2370CrossRef
go back to reference Hadden JA, French AD, Woods R (2013) Unraveling cellulose microfibrils: a twisted tale. Biopolymers 99(10):746–756CrossRef Hadden JA, French AD, Woods R (2013) Unraveling cellulose microfibrils: a twisted tale. Biopolymers 99(10):746–756CrossRef
go back to reference Hansen HS, Hünenberger PH (2011) A reoptimized GROMOS force field for hexopyranose-based carbohydrates accounting for the relative free energies of ring conformers, anomers, epimers, hydroxymethyl rotamers, and glycosidic linkage conformers. J Comput Chem 32(6):998–1032CrossRef Hansen HS, Hünenberger PH (2011) A reoptimized GROMOS force field for hexopyranose-based carbohydrates accounting for the relative free energies of ring conformers, anomers, epimers, hydroxymethyl rotamers, and glycosidic linkage conformers. J Comput Chem 32(6):998–1032CrossRef
go back to reference Hess B, Bekker H, Berendsen HC, Fraaije JMGE (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18:1463–1472CrossRef Hess B, Bekker H, Berendsen HC, Fraaije JMGE (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18:1463–1472CrossRef
go back to reference Hess B, Kutzner C, van der Spoel V, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4:435–447CrossRef Hess B, Kutzner C, van der Spoel V, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4:435–447CrossRef
go back to reference Hockney RW, Goel SP (1974) Quiet high-resolution computer models of a plasma. J Comput Phys 14:148–158CrossRef Hockney RW, Goel SP (1974) Quiet high-resolution computer models of a plasma. J Comput Phys 14:148–158CrossRef
go back to reference Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33–38CrossRef Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33–38CrossRef
go back to reference Kirschner KN, Yongye AB, Tschampel SM, González-Outeiriño J, Daniels CR, Foley BL, Woods RJ (2008) GLYCAM06: a generalizable biomolecular force field carbohydrates. J Comput Chem 29(4):622–655CrossRef Kirschner KN, Yongye AB, Tschampel SM, González-Outeiriño J, Daniels CR, Foley BL, Woods RJ (2008) GLYCAM06: a generalizable biomolecular force field carbohydrates. J Comput Chem 29(4):622–655CrossRef
go back to reference Koehler JE, Saenger W, van Gunsteren WF (1987) A molecular dynamics simulation of crystalline α-cyclodextrin hexahydrate. J Eur Biophys 15:197–210CrossRef Koehler JE, Saenger W, van Gunsteren WF (1987) A molecular dynamics simulation of crystalline α-cyclodextrin hexahydrate. J Eur Biophys 15:197–210CrossRef
go back to reference Kroon-Batenburg LMJ, Kroon J (1997) The crystal and molecular structures of cellulose I and II. Glycoconj J 14:677–690CrossRef Kroon-Batenburg LMJ, Kroon J (1997) The crystal and molecular structures of cellulose I and II. Glycoconj J 14:677–690CrossRef
go back to reference Langan P, Nishiyama Y, Chanzy H (2001) X-ray structure of mercerized cellulose II at 1 Å resolution. Biomacromolecules 2(2):410–416CrossRef Langan P, Nishiyama Y, Chanzy H (2001) X-ray structure of mercerized cellulose II at 1 Å resolution. Biomacromolecules 2(2):410–416CrossRef
go back to reference Lins RD, Hünenberger PH (2005) A new GROMOS force field for hexopyranose-based carbohydrates. J Comput Chem 26(13):1400–1412CrossRef Lins RD, Hünenberger PH (2005) A new GROMOS force field for hexopyranose-based carbohydrates. J Comput Chem 26(13):1400–1412CrossRef
go back to reference Mackerell AD (2004) Empirical force fields for biological macromolecules: overview and issues. J Comput Chem 25(13):1584–1604CrossRef Mackerell AD (2004) Empirical force fields for biological macromolecules: overview and issues. J Comput Chem 25(13):1584–1604CrossRef
go back to reference Matthews JF, Skopec CE, Mason PE, Zuccato P, Torget RW, Sugiyama J, Himmel ME, Brady JW (2006) Computer simulation studies of microcrystalline cellulose Iβ. Carbohydr Res 341(1):138–152CrossRef Matthews JF, Skopec CE, Mason PE, Zuccato P, Torget RW, Sugiyama J, Himmel ME, Brady JW (2006) Computer simulation studies of microcrystalline cellulose Iβ. Carbohydr Res 341(1):138–152CrossRef
go back to reference Matthews JF, Beckham GT, Bergenstrahle M, Brady JW, Himmel ME, Crowley MF (2012) Comparison of cellulose Iβ simulations with three carbohydrate force fields. J Chem Theory Comput 8:735–748CrossRef Matthews JF, Beckham GT, Bergenstrahle M, Brady JW, Himmel ME, Crowley MF (2012) Comparison of cellulose Iβ simulations with three carbohydrate force fields. J Chem Theory Comput 8:735–748CrossRef
go back to reference Mazeau K (2005) Structural micro-heterogeneities of crystalline Iβ-cellulose. Cellulose 12:339–349CrossRef Mazeau K (2005) Structural micro-heterogeneities of crystalline Iβ-cellulose. Cellulose 12:339–349CrossRef
go back to reference Nelder JA, Mead R (1965) A simplex method for function minimization. Comput J 7:308–313CrossRef Nelder JA, Mead R (1965) A simplex method for function minimization. Comput J 7:308–313CrossRef
go back to reference Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124(31):9074–9082CrossRef Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124(31):9074–9082CrossRef
go back to reference Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003) Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 125(47):14300–14306CrossRef Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003) Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 125(47):14300–14306CrossRef
go back to reference Nishiyama Y, Johnson GP, French AD (2012) Diffraction from nonperiodic models of cellulose crystals. Cellulose 19:319–336CrossRef Nishiyama Y, Johnson GP, French AD (2012) Diffraction from nonperiodic models of cellulose crystals. Cellulose 19:319–336CrossRef
go back to reference Oostenbrink C, Villa A, Mark AE, Van Gunsteren WF (2004) A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. J Comput Chem 25(13):1656–1676CrossRef Oostenbrink C, Villa A, Mark AE, Van Gunsteren WF (2004) A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. J Comput Chem 25(13):1656–1676CrossRef
go back to reference Schuler LD, Daura X, van Gunsteren WF (2001) An improved GROMOS96 force field for aliphatic hydrocarbons in the condensed phase. J Comput Chem 22:1205–1218CrossRef Schuler LD, Daura X, van Gunsteren WF (2001) An improved GROMOS96 force field for aliphatic hydrocarbons in the condensed phase. J Comput Chem 22:1205–1218CrossRef
go back to reference Taylor JB, Rowlinson JS (1955) The thermodynamic properties of aqueous solutions of glucose. Trans Faraday Soc 51:1183–1192CrossRef Taylor JB, Rowlinson JS (1955) The thermodynamic properties of aqueous solutions of glucose. Trans Faraday Soc 51:1183–1192CrossRef
go back to reference Van Gunsteren WF, Bakowies D, Baron R, Chandrasekhar I, Christen M, Daura X, Gee P, Geerke DP, Glättli A, Hünenberger PH, Kastenholz MA, Oostenbrink C, Schenk M, Trzesniak D, van der Vegt NFA, Yu HB (2006) Biomolecular modeling: goals, problems, perspectives. Angew Chem Int Ed 45(25):4064–4092CrossRef Van Gunsteren WF, Bakowies D, Baron R, Chandrasekhar I, Christen M, Daura X, Gee P, Geerke DP, Glättli A, Hünenberger PH, Kastenholz MA, Oostenbrink C, Schenk M, Trzesniak D, van der Vegt NFA, Yu HB (2006) Biomolecular modeling: goals, problems, perspectives. Angew Chem Int Ed 45(25):4064–4092CrossRef
go back to reference Viëtor RJ, Mazeau K, Lakin M, Pérez S (2000) A priori crystal structure prediction of native celluloses. Biopolymers 54(5):342–354CrossRef Viëtor RJ, Mazeau K, Lakin M, Pérez S (2000) A priori crystal structure prediction of native celluloses. Biopolymers 54(5):342–354CrossRef
go back to reference Wada M (2002) Lateral thermal expansion of cellulose Iβ and IIII polymorphs. J Polym Sci Part B 40:1095–1102CrossRef Wada M (2002) Lateral thermal expansion of cellulose Iβ and IIII polymorphs. J Polym Sci Part B 40:1095–1102CrossRef
go back to reference Wada M, Chanzy H, Nishiyama Y, Langan P (2004) Cellulose IIII crystal structure and hydrogen bonding by synchrotron X-ray and neutron fiber diffraction. Macromolecules 37(23):8548–8555CrossRef Wada M, Chanzy H, Nishiyama Y, Langan P (2004) Cellulose IIII crystal structure and hydrogen bonding by synchrotron X-ray and neutron fiber diffraction. Macromolecules 37(23):8548–8555CrossRef
go back to reference Zhang Q, Bulone V, Ågren H, Tu Y (2011) A molecular dynamics study of the thermal response of crystalline cellulose Iβ. Cellulose 18:207–221CrossRef Zhang Q, Bulone V, Ågren H, Tu Y (2011) A molecular dynamics study of the thermal response of crystalline cellulose Iβ. Cellulose 18:207–221CrossRef
Metadata
Title
Atomic partial charges and one Lennard-Jones parameter crucial to model cellulose allomorphs
Authors
Pan Chen
Yoshiharu Nishiyama
Karim Mazeau
Publication date
01-08-2014
Publisher
Springer Netherlands
Published in
Cellulose / Issue 4/2014
Print ISSN: 0969-0239
Electronic ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-014-0279-2

Other articles of this Issue 4/2014

Cellulose 4/2014 Go to the issue