Skip to main content
Top
Published in: Journal of Materials Science 5/2019

19-11-2018 | Computation

Atomistic modeling of interfacial segregation and structural transitions in ternary alloys

Authors: Yang Hu, Timothy J. Rupert

Published in: Journal of Materials Science | Issue 5/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Grain boundary engineering via dopant segregation can dramatically change the properties of a material. For metallic systems, most current studies concerning interfacial segregation and subsequent transitions of grain boundary structure are limited to binary alloys, yet many important alloy systems contain more than one type of dopant. In this work, hybrid Monte Carlo/molecular dynamics simulations are performed to investigate the behavior of dopants at interfaces in two model ternary alloy systems: Cu–Zr–Ag and Al–Zr–Cu. Trends in boundary segregation are studied, as well as the propensity for the grain boundary structure to become disordered at high temperature and doping concentration. For Al–Zr–Cu, we find that the two solutes prefer to occupy different sites at the grain boundary, leading to a synergistic doping effect. Alternatively, for Cu–Zr–Ag, there is site competition because the preferred segregation sites are the same. Finally, we find that thicker amorphous intergranular films can be formed in ternary systems by controlling the concentration ratio of different solute elements.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference McLean D (1957) Grain boundaries in metals, 1st edn. Clarendon Press, Oxford McLean D (1957) Grain boundaries in metals, 1st edn. Clarendon Press, Oxford
2.
go back to reference Sutton AP, Balluffi RW (2006) Interfaces in crystalline materials. Oxford University Press, New York Sutton AP, Balluffi RW (2006) Interfaces in crystalline materials. Oxford University Press, New York
3.
go back to reference Randle V (1993) The measurement of grain boundary geometry, 1st edn. Taylor and Francis, London Randle V (1993) The measurement of grain boundary geometry, 1st edn. Taylor and Francis, London
4.
go back to reference Howe JM (1997) Interfaces in materials: atomic structure, thermodynamics and kinetics of solid–vapor, solid–liquid and solid–solid interfaces. Wiley-Interscience, New York Howe JM (1997) Interfaces in materials: atomic structure, thermodynamics and kinetics of solid–vapor, solid–liquid and solid–solid interfaces. Wiley-Interscience, New York
5.
go back to reference Gottstein G, Shvindlerman LS (2009) Grain boundary migration in metals: thermodynamics, kinetics, applications, 2nd edn. CRC Press, New YorkCrossRef Gottstein G, Shvindlerman LS (2009) Grain boundary migration in metals: thermodynamics, kinetics, applications, 2nd edn. CRC Press, New YorkCrossRef
6.
go back to reference Wolf D, Yip S (1992) Materials interfaces: atomic-level structure and properties, 1st edn. CRC Press, New York Wolf D, Yip S (1992) Materials interfaces: atomic-level structure and properties, 1st edn. CRC Press, New York
7.
go back to reference Alexander BH, Balluffi RW (1957) The mechanism of sintering of copper. Acta Metall 5:666–677CrossRef Alexander BH, Balluffi RW (1957) The mechanism of sintering of copper. Acta Metall 5:666–677CrossRef
8.
go back to reference Burke JE (1957) Role of grain boundaries in sintering. J Am Ceram Soc 40:80–85CrossRef Burke JE (1957) Role of grain boundaries in sintering. J Am Ceram Soc 40:80–85CrossRef
9.
go back to reference Coble RL, Burke JE (1963) Sintering in ceramics. Progr Ceram Sci 3:197–251 Coble RL, Burke JE (1963) Sintering in ceramics. Progr Ceram Sci 3:197–251
10.
go back to reference Djohari H, Derby JJ (2009) Transport mechanisms and densification during sintering: II. Grain boundaries. Chem Eng Sci 64:3810–3816CrossRef Djohari H, Derby JJ (2009) Transport mechanisms and densification during sintering: II. Grain boundaries. Chem Eng Sci 64:3810–3816CrossRef
11.
go back to reference Meyers MA, Mishra A, Benson DJ (2006) Mechanical properties of nanocrystalline materials. Prog Mater Sci 51:427–556CrossRef Meyers MA, Mishra A, Benson DJ (2006) Mechanical properties of nanocrystalline materials. Prog Mater Sci 51:427–556CrossRef
12.
go back to reference Kumar KS, Van Swygenhoven H, Suresh S (2003) Mechanical behavior of nanocrystalline metals and alloys1. Acta Mater 51:5743–5774CrossRef Kumar KS, Van Swygenhoven H, Suresh S (2003) Mechanical behavior of nanocrystalline metals and alloys1. Acta Mater 51:5743–5774CrossRef
13.
go back to reference Dao M, Lu L, Asaro RJ, De Hosson JT, Ma E (2007) Toward a quantitative understanding of mechanical behavior of nanocrystalline metals. Acta Mater 55:4041–4065CrossRef Dao M, Lu L, Asaro RJ, De Hosson JT, Ma E (2007) Toward a quantitative understanding of mechanical behavior of nanocrystalline metals. Acta Mater 55:4041–4065CrossRef
14.
go back to reference Mathaudhu SN, Boyce BL (2015) Thermal stability: the next frontier for nanocrystalline materials. JOM 67:2785–2787CrossRef Mathaudhu SN, Boyce BL (2015) Thermal stability: the next frontier for nanocrystalline materials. JOM 67:2785–2787CrossRef
15.
go back to reference Kalidindi AR, Chookajorn T, Schuh CA (2015) Nanocrystalline materials at equilibrium: a thermodynamic review. JOM 67:2834–2843CrossRef Kalidindi AR, Chookajorn T, Schuh CA (2015) Nanocrystalline materials at equilibrium: a thermodynamic review. JOM 67:2834–2843CrossRef
16.
go back to reference Peng HR, Gong MM, Chen YZ, Liu F (2017) Thermal stability of nanocrystalline materials: thermodynamics and kinetics. Int Mater Rev 62:303–333CrossRef Peng HR, Gong MM, Chen YZ, Liu F (2017) Thermal stability of nanocrystalline materials: thermodynamics and kinetics. Int Mater Rev 62:303–333CrossRef
17.
go back to reference Raabe D, Herbig M, Sandlobes S, Li Y, Tytko D, Kuzmina M, Ponge D, Choi PP (2014) Grain boundary segregation engineering in metallic alloys: a pathway to the design of interfaces. Curr Opin Solid State Mater Sci 18:253–261CrossRef Raabe D, Herbig M, Sandlobes S, Li Y, Tytko D, Kuzmina M, Ponge D, Choi PP (2014) Grain boundary segregation engineering in metallic alloys: a pathway to the design of interfaces. Curr Opin Solid State Mater Sci 18:253–261CrossRef
18.
go back to reference Seah MP (1980) Grain-boundary segregation. J Phys F Met Phys 10:1043–1064CrossRef Seah MP (1980) Grain-boundary segregation. J Phys F Met Phys 10:1043–1064CrossRef
19.
go back to reference Jorgensen PJ, Westbrook JH (1964) Role of solute segregation at grain boundaries during final-stage sintering of alumina. J Am Ceram Soc 47:332–338CrossRef Jorgensen PJ, Westbrook JH (1964) Role of solute segregation at grain boundaries during final-stage sintering of alumina. J Am Ceram Soc 47:332–338CrossRef
20.
go back to reference Jorgensen PJ (1965) Modification of sintering kinetics by solute segregation in Al2O3. J Am Ceram Soc 48:207–210CrossRef Jorgensen PJ (1965) Modification of sintering kinetics by solute segregation in Al2O3. J Am Ceram Soc 48:207–210CrossRef
21.
go back to reference Schuler JD, Rupert TJ (2017) Materials selection rules for amorphous complexion formation in binary metallic alloys. Acta Mater 140:196–205CrossRef Schuler JD, Rupert TJ (2017) Materials selection rules for amorphous complexion formation in binary metallic alloys. Acta Mater 140:196–205CrossRef
22.
go back to reference Khalajhedayati A, Pan ZL, Rupert TJ (2016) Manipulating the interfacial structure of nanomaterials to achieve a unique combination of strength and ductility. Nat Commun 7:10802-1–10802-8CrossRef Khalajhedayati A, Pan ZL, Rupert TJ (2016) Manipulating the interfacial structure of nanomaterials to achieve a unique combination of strength and ductility. Nat Commun 7:10802-1–10802-8CrossRef
23.
go back to reference Khalajhedayati A, Rupert TJ (2015) High-temperature stability and grain boundary complexion formation in a nanocrystalline Cu–Zr alloy. JOM 67:2788–2801CrossRef Khalajhedayati A, Rupert TJ (2015) High-temperature stability and grain boundary complexion formation in a nanocrystalline Cu–Zr alloy. JOM 67:2788–2801CrossRef
24.
go back to reference Chookajorn T, Murdoch HA, Schuh CA (2012) Design of stable nanocrystalline alloys. Science 337:951–954CrossRef Chookajorn T, Murdoch HA, Schuh CA (2012) Design of stable nanocrystalline alloys. Science 337:951–954CrossRef
25.
go back to reference Mayr SG, Bedorf D (2007) Stabilization of Cu nanostructures by grain boundary doping with Bi: experiment versus molecular dynamics simulation. Phys Rev B 76:024111-1–024111-8CrossRef Mayr SG, Bedorf D (2007) Stabilization of Cu nanostructures by grain boundary doping with Bi: experiment versus molecular dynamics simulation. Phys Rev B 76:024111-1–024111-8CrossRef
26.
go back to reference Harzer TP, Djaziri S, Raghavan R, Dehm G (2015) Nanostructure and mechanical behavior of metastable Cu–Cr thin films grown by molecular beam epitaxy. Acta Mater 83:318–332CrossRef Harzer TP, Djaziri S, Raghavan R, Dehm G (2015) Nanostructure and mechanical behavior of metastable Cu–Cr thin films grown by molecular beam epitaxy. Acta Mater 83:318–332CrossRef
27.
go back to reference Dillon SJ, Tang M, Carter WC, Harmer MP (2007) Complexion: a new concept for kinetic engineering in materials science. Acta Mater 55:6208–6218CrossRef Dillon SJ, Tang M, Carter WC, Harmer MP (2007) Complexion: a new concept for kinetic engineering in materials science. Acta Mater 55:6208–6218CrossRef
28.
29.
go back to reference Cantwell PR, Tang M, Dillon SJ, Luo J, Rohrer GS, Harmer MP (2014) Grain boundary complexions. Acta Mater 62:1–48CrossRef Cantwell PR, Tang M, Dillon SJ, Luo J, Rohrer GS, Harmer MP (2014) Grain boundary complexions. Acta Mater 62:1–48CrossRef
30.
go back to reference Pan Z, Rupert TJ (2015) Amorphous intergranular films as toughening structural features. Acta Mater 89:205–214CrossRef Pan Z, Rupert TJ (2015) Amorphous intergranular films as toughening structural features. Acta Mater 89:205–214CrossRef
31.
go back to reference Luo J (2008) Liquid-like interface complexion: from activated sintering to grain boundary diagrams. Curr Opin Solid State Mater Sci 12:81–88CrossRef Luo J (2008) Liquid-like interface complexion: from activated sintering to grain boundary diagrams. Curr Opin Solid State Mater Sci 12:81–88CrossRef
32.
go back to reference Luo J, Wang H, Chiang Y (1999) Origin of solid-state activated sintering in Bi2O3-doped ZnO. J Am Ceram Soc 82:916–920CrossRef Luo J, Wang H, Chiang Y (1999) Origin of solid-state activated sintering in Bi2O3-doped ZnO. J Am Ceram Soc 82:916–920CrossRef
33.
go back to reference Gupta VK, Yoon DH, Meyer HM, Luo J (2007) Thin intergranular films and solid-state activated sintering in nickel-doped tungsten. Acta Mater 55:3131–3142CrossRef Gupta VK, Yoon DH, Meyer HM, Luo J (2007) Thin intergranular films and solid-state activated sintering in nickel-doped tungsten. Acta Mater 55:3131–3142CrossRef
34.
go back to reference Nie J, Chan JM, Qin M, Zhou N, Luo J (2017) Liquid-like grain boundary complexion and sub-eutectic activated sintering in CuO-doped TiO2. Acta Mater 130:329–338CrossRef Nie J, Chan JM, Qin M, Zhou N, Luo J (2017) Liquid-like grain boundary complexion and sub-eutectic activated sintering in CuO-doped TiO2. Acta Mater 130:329–338CrossRef
35.
go back to reference Darling KA, Rajagopalan M, Komarasamy M, Bhatia MA, Hornbuckle BC, Mishra RS, Solanki KN (2016) Extreme creep resistance in a microstructurally stable nanocrystalline alloy. Nature 537:378–381CrossRef Darling KA, Rajagopalan M, Komarasamy M, Bhatia MA, Hornbuckle BC, Mishra RS, Solanki KN (2016) Extreme creep resistance in a microstructurally stable nanocrystalline alloy. Nature 537:378–381CrossRef
36.
go back to reference Rajagopalan M, Darling K, Turnage S, Koju RK, Hornbuckle B, Mishin Y, Solanki KN (2017) Microstructural evolution in a nanocrystalline Cu–Ta alloy: a combined in-situ TEM and atomistic study. Mater Des 113:178–185CrossRef Rajagopalan M, Darling K, Turnage S, Koju RK, Hornbuckle B, Mishin Y, Solanki KN (2017) Microstructural evolution in a nanocrystalline Cu–Ta alloy: a combined in-situ TEM and atomistic study. Mater Des 113:178–185CrossRef
37.
go back to reference Koju RK, Darling KA, Kecskes LJ, Mishin Y (2016) Zener pinning of grain boundaries and structural stability of immiscible alloys. JOM 68:1596–1604CrossRef Koju RK, Darling KA, Kecskes LJ, Mishin Y (2016) Zener pinning of grain boundaries and structural stability of immiscible alloys. JOM 68:1596–1604CrossRef
38.
go back to reference Mishin Y (2014) Calculation of the γ/γ′ interface free energy in the Ni–Al system by the capillary fluctuation method. Model Simul Mater Sci Eng 22:045001-1–045001-16CrossRef Mishin Y (2014) Calculation of the γ/γ′ interface free energy in the Ni–Al system by the capillary fluctuation method. Model Simul Mater Sci Eng 22:045001-1–045001-16CrossRef
39.
go back to reference Pun GP, Yamakov V, Mishin Y (2015) Interatomic potential for the ternary Ni–Al–Co system and application to atomistic modeling of the B2–L10 martensitic transformation. Model Simul Mater Sci Eng 23:065006CrossRef Pun GP, Yamakov V, Mishin Y (2015) Interatomic potential for the ternary Ni–Al–Co system and application to atomistic modeling of the B2–L10 martensitic transformation. Model Simul Mater Sci Eng 23:065006CrossRef
40.
go back to reference Williams PL, Mishin Y (2009) Thermodynamics of grain boundary premelting in alloys. II. Atomistic simulation. Acta Mater 57:3786–3794CrossRef Williams PL, Mishin Y (2009) Thermodynamics of grain boundary premelting in alloys. II. Atomistic simulation. Acta Mater 57:3786–3794CrossRef
42.
go back to reference Ke X, Sansoz F (2017) Segregation-affected yielding and stability in nanotwinned silver by microalloying. Phys Rev Mater 1(6):063604CrossRef Ke X, Sansoz F (2017) Segregation-affected yielding and stability in nanotwinned silver by microalloying. Phys Rev Mater 1(6):063604CrossRef
43.
go back to reference Cipolloni G, Pellizzari M, Molinari A, Hebda M, Zadra M (2015) Contamination during the high-energy milling of atomized copper powder and its effects on spark plasma sintering. Powder Technol 275:51–59CrossRef Cipolloni G, Pellizzari M, Molinari A, Hebda M, Zadra M (2015) Contamination during the high-energy milling of atomized copper powder and its effects on spark plasma sintering. Powder Technol 275:51–59CrossRef
44.
go back to reference Zhou NX, Luo J (2015) Developing grain boundary diagrams for multicomponent alloys. Acta Mater 91:202–216CrossRef Zhou NX, Luo J (2015) Developing grain boundary diagrams for multicomponent alloys. Acta Mater 91:202–216CrossRef
45.
go back to reference Zhou NX, Hu T, Luo J (2016) Grain boundary complexions in multicomponent alloys: challenges and opportunities. Curr Opin Solid State Mater Sci 20:268–277CrossRef Zhou NX, Hu T, Luo J (2016) Grain boundary complexions in multicomponent alloys: challenges and opportunities. Curr Opin Solid State Mater Sci 20:268–277CrossRef
46.
go back to reference Inoue A (2000) Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater 48:279–306CrossRef Inoue A (2000) Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater 48:279–306CrossRef
47.
go back to reference Zhou N, Hu T, Huang J, Luo J (2016) Stabilization of nanocrystalline alloys at high temperatures via utilizing high-entropy grain boundary complexions. Scr Mater 124:160–163CrossRef Zhou N, Hu T, Huang J, Luo J (2016) Stabilization of nanocrystalline alloys at high temperatures via utilizing high-entropy grain boundary complexions. Scr Mater 124:160–163CrossRef
48.
go back to reference Sadigh B, Erhart P, Stukowski A, Caro A, Martinez E, Zepeda-Ruiz L (2012) Scalable parallel Monte Carlo algorithm for atomistic simulations of precipitation in alloys. Phys Rev B 85:184203-1–184203-11CrossRef Sadigh B, Erhart P, Stukowski A, Caro A, Martinez E, Zepeda-Ruiz L (2012) Scalable parallel Monte Carlo algorithm for atomistic simulations of precipitation in alloys. Phys Rev B 85:184203-1–184203-11CrossRef
49.
go back to reference Plimpton S (1995) Fast parallel algorithms for short-range molecular-dynamics. J Comput Phys 117:1–19CrossRef Plimpton S (1995) Fast parallel algorithms for short-range molecular-dynamics. J Comput Phys 117:1–19CrossRef
50.
go back to reference Zhang L, Lu C, Tieu K (2014) Atomistic simulation of tensile deformation behavior of Σ5 tilt grain boundaries in copper bicrystal. Sci Rep 4:5919-1–5919-9 Zhang L, Lu C, Tieu K (2014) Atomistic simulation of tensile deformation behavior of Σ5 tilt grain boundaries in copper bicrystal. Sci Rep 4:5919-1–5919-9
51.
go back to reference Tschopp MA, Coleman SP, McDowell DL (2015) Symmetric and asymmetric tilt grain boundary structure and energy in Cu and Al (and transferability to other fcc metals). Integr Mater Manuf Innov 4:11-1–11-14CrossRef Tschopp MA, Coleman SP, McDowell DL (2015) Symmetric and asymmetric tilt grain boundary structure and energy in Cu and Al (and transferability to other fcc metals). Integr Mater Manuf Innov 4:11-1–11-14CrossRef
52.
go back to reference Stukowski A (2010) Visualization and analysis of atomistic simulation data with OVITO—the open visualization tool. Model Simul Mater Sci Eng 18:015012-1–015012-7 Stukowski A (2010) Visualization and analysis of atomistic simulation data with OVITO—the open visualization tool. Model Simul Mater Sci Eng 18:015012-1–015012-7
53.
go back to reference Honeycutt JD, Andersen HC (1987) Molecular-dynamics study of melting and freezing of small Lennard-Jones clusters. J Phys Chem US 91:4950–4963CrossRef Honeycutt JD, Andersen HC (1987) Molecular-dynamics study of melting and freezing of small Lennard-Jones clusters. J Phys Chem US 91:4950–4963CrossRef
54.
go back to reference Frolov T, Asta M, Mishin Y (2015) Segregation-induced phase transformations in grain boundaries. Phys Rev B 92:020103-1–020103-5CrossRef Frolov T, Asta M, Mishin Y (2015) Segregation-induced phase transformations in grain boundaries. Phys Rev B 92:020103-1–020103-5CrossRef
55.
go back to reference Liu XY, Xu W, Foiles SM, Adams JB (1998) Atomistic studies of segregation and diffusion in Al–Cu grain boundaries. Appl Phys Lett 72:1578–1580CrossRef Liu XY, Xu W, Foiles SM, Adams JB (1998) Atomistic studies of segregation and diffusion in Al–Cu grain boundaries. Appl Phys Lett 72:1578–1580CrossRef
56.
go back to reference Carpenter DT, Watanabe M, Barmak K, Williams DB (1999) Low-magnification quantitative X-ray mapping of grain-boundary segregation in aluminum–4 wt.% copper by analytical electron microscopy. Microsc Microanal 5:254–266CrossRef Carpenter DT, Watanabe M, Barmak K, Williams DB (1999) Low-magnification quantitative X-ray mapping of grain-boundary segregation in aluminum–4 wt.% copper by analytical electron microscopy. Microsc Microanal 5:254–266CrossRef
57.
go back to reference Chen Y, Gao N, Sha G, Ringer SP, Starink MJ (2016) Microstructural evolution, strengthening and thermal stability of an ultrafine-grained Al–Cu–Mg alloy. Acta Mater 109:202–212CrossRef Chen Y, Gao N, Sha G, Ringer SP, Starink MJ (2016) Microstructural evolution, strengthening and thermal stability of an ultrafine-grained Al–Cu–Mg alloy. Acta Mater 109:202–212CrossRef
58.
go back to reference Tsivoulas D, Robson JD (2015) Heterogeneous Zr solute segregation and Al3Zr dispersoid distributions in Al–Cu–Li alloys. Acta Mater 93:73–86CrossRef Tsivoulas D, Robson JD (2015) Heterogeneous Zr solute segregation and Al3Zr dispersoid distributions in Al–Cu–Li alloys. Acta Mater 93:73–86CrossRef
59.
go back to reference Yan HB, Gan FX, Huang DQ (1989) Evaporated Cu–Al amorphous-alloys and their phase-transition. J Non-Cryst Solids 112:221–227CrossRef Yan HB, Gan FX, Huang DQ (1989) Evaporated Cu–Al amorphous-alloys and their phase-transition. J Non-Cryst Solids 112:221–227CrossRef
60.
go back to reference Yang JJ, Yang Y, Wu K, Chang YA (2005) The formation of amorphous alloy oxides as barriers used in magnetic tunnel junctions. J Appl Phys 98:074508-1–074508-6 Yang JJ, Yang Y, Wu K, Chang YA (2005) The formation of amorphous alloy oxides as barriers used in magnetic tunnel junctions. J Appl Phys 98:074508-1–074508-6
61.
go back to reference Cui YY, Wang TL, Li JH, Dai Y, Liu BX (2011) Thermodynamic calculation and interatomic potential to predict the favored composition region for the Cu–Zr–Al metallic glass formation. Phys Chem Chem Phys 13:4103–4108CrossRef Cui YY, Wang TL, Li JH, Dai Y, Liu BX (2011) Thermodynamic calculation and interatomic potential to predict the favored composition region for the Cu–Zr–Al metallic glass formation. Phys Chem Chem Phys 13:4103–4108CrossRef
62.
go back to reference Daw MS, Baskes MI (1984) Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals. Phys Rev B 29:6443–6453CrossRef Daw MS, Baskes MI (1984) Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals. Phys Rev B 29:6443–6453CrossRef
63.
go back to reference Fujita T, Guan PF, Sheng HW, Inoue A, Sakurai T, Chen MW (2010) Coupling between chemical and dynamic heterogeneities in a multicomponent bulk metallic glass. Phys Rev B 81:140204-1–140204-4CrossRef Fujita T, Guan PF, Sheng HW, Inoue A, Sakurai T, Chen MW (2010) Coupling between chemical and dynamic heterogeneities in a multicomponent bulk metallic glass. Phys Rev B 81:140204-1–140204-4CrossRef
64.
go back to reference Cheng YQ, Ma E, Sheng HW (2009) Atomic level structure in multicomponent bulk metallic glass. Phys Rev Lett 102:245501-1–245501-4 Cheng YQ, Ma E, Sheng HW (2009) Atomic level structure in multicomponent bulk metallic glass. Phys Rev Lett 102:245501-1–245501-4
65.
go back to reference Hu Y, Schuler JD, Rupert TJ (2018) Identifying interatomic potentials for the accurate modeling of interfacial segregation and structural transitions. Comput Mater Sci 148:10–20CrossRef Hu Y, Schuler JD, Rupert TJ (2018) Identifying interatomic potentials for the accurate modeling of interfacial segregation and structural transitions. Comput Mater Sci 148:10–20CrossRef
66.
go back to reference Murray JL (1985) The aluminium–copper system. Int Met Rev 30(1):211–234CrossRef Murray JL (1985) The aluminium–copper system. Int Met Rev 30(1):211–234CrossRef
67.
go back to reference Turchanin M (1997) Calorimetric research on the heat of formation of liquid alloys of copper with group IIIA and group IVA metals. Powder Metall Met Ceram 36:253–263CrossRef Turchanin M (1997) Calorimetric research on the heat of formation of liquid alloys of copper with group IIIA and group IVA metals. Powder Metall Met Ceram 36:253–263CrossRef
68.
go back to reference Edwards RK, Downing JH (1956) The thermodynamics of the liquid solutions in the triad Cu–Ag–Au. I. The Cu–Ag system. J Phys Chem US 60:108–111CrossRef Edwards RK, Downing JH (1956) The thermodynamics of the liquid solutions in the triad Cu–Ag–Au. I. The Cu–Ag system. J Phys Chem US 60:108–111CrossRef
69.
go back to reference Esin YO, Bobrov NP, Petrushevskiy MS, Geld PV (1974) Enthalpy of formation of liquid aluminum-alloys with titanium and zirconium. Russ Metall 5:86–89 Esin YO, Bobrov NP, Petrushevskiy MS, Geld PV (1974) Enthalpy of formation of liquid aluminum-alloys with titanium and zirconium. Russ Metall 5:86–89
70.
go back to reference Witusiewicz VT, Hecht U, Fries SG, Rex S (2004) The Ag–Al–Cu system: part I: reassessment of the constituent binaries on the basis of new experimental data. J Alloys Compd 385:133–143 Witusiewicz VT, Hecht U, Fries SG, Rex S (2004) The Ag–Al–Cu system: part I: reassessment of the constituent binaries on the basis of new experimental data. J Alloys Compd 385:133–143
71.
go back to reference Jain A, Ong SP, Hautier G, Chen W, Richards WD, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G (2013) Commentary: the materials project: a materials genome approach to accelerating materials innovation. APL Mater 1:011002-1–011002-11CrossRef Jain A, Ong SP, Hautier G, Chen W, Richards WD, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G (2013) Commentary: the materials project: a materials genome approach to accelerating materials innovation. APL Mater 1:011002-1–011002-11CrossRef
72.
go back to reference Lazarus D (1949) The variation of the adiabatic elastic constants of KCl, NaCl, CuZn, Cu, and Al with pressure to 10,000 bars. Phys Rev 76:545–553CrossRef Lazarus D (1949) The variation of the adiabatic elastic constants of KCl, NaCl, CuZn, Cu, and Al with pressure to 10,000 bars. Phys Rev 76:545–553CrossRef
73.
go back to reference Hearmon RFS (1946) The elastic constants of anisotropic materials. Rev Mod Phys 18:409–440CrossRef Hearmon RFS (1946) The elastic constants of anisotropic materials. Rev Mod Phys 18:409–440CrossRef
74.
go back to reference Hearmon RFS (1956) The elastic constants of anisotropic materials—II. Adv Phys 5:323–382CrossRef Hearmon RFS (1956) The elastic constants of anisotropic materials—II. Adv Phys 5:323–382CrossRef
75.
go back to reference Straumanis ME, Yu LS (1969) Lattice parameters, densities, expansion coefficients and perfection of structure of Cu and of Cu-in alpha phase. Acta Cryst 25:676–682CrossRef Straumanis ME, Yu LS (1969) Lattice parameters, densities, expansion coefficients and perfection of structure of Cu and of Cu-in alpha phase. Acta Cryst 25:676–682CrossRef
76.
go back to reference Hertzberg RW (1996) Deformation and fracture and fracture mechanics of engineering materials, 4th edn. Wiley, New York Hertzberg RW (1996) Deformation and fracture and fracture mechanics of engineering materials, 4th edn. Wiley, New York
77.
go back to reference Methfessel M, Hennig D, Scheffler M (1992) Trends of the surface relaxations, surface energies, and work-functions of the 4d transition-metals. Phys Rev B 46:4816–4829CrossRef Methfessel M, Hennig D, Scheffler M (1992) Trends of the surface relaxations, surface energies, and work-functions of the 4d transition-metals. Phys Rev B 46:4816–4829CrossRef
78.
go back to reference Liu LG, Bassett WA (1973) Compression of Ag and phase transformation of NaCl. J Appl Phys 44:1475–1479CrossRef Liu LG, Bassett WA (1973) Compression of Ag and phase transformation of NaCl. J Appl Phys 44:1475–1479CrossRef
79.
go back to reference Straumanis ME, Woodward CL (1971) Lattice parameters and thermal expansion coefficients of Al, Ag and Mo at low temperatures. Comparison with dilatometric data. Acta Cryst 27:549–551CrossRef Straumanis ME, Woodward CL (1971) Lattice parameters and thermal expansion coefficients of Al, Ag and Mo at low temperatures. Comparison with dilatometric data. Acta Cryst 27:549–551CrossRef
80.
go back to reference Yang S, Zhou N, Zheng H, Ong SP, Luo J (2018) First-order interfacial transformations with a critical point: breaking the symmetry at a symmetric tilt grain boundary. Phys Rev Lett 120:085702-1–085702-6 Yang S, Zhou N, Zheng H, Ong SP, Luo J (2018) First-order interfacial transformations with a critical point: breaking the symmetry at a symmetric tilt grain boundary. Phys Rev Lett 120:085702-1–085702-6
81.
go back to reference Tewari A, Galmarini S, Stuer M, Bowen P (2012) Atomistic modeling of the effect of codoping on the atomistic structure of interfaces in alpha-alumina. J Eur Ceram Soc 32:2935–2948CrossRef Tewari A, Galmarini S, Stuer M, Bowen P (2012) Atomistic modeling of the effect of codoping on the atomistic structure of interfaces in alpha-alumina. J Eur Ceram Soc 32:2935–2948CrossRef
82.
go back to reference Huang ZF, Chen F, Shen Q, Zhang L, Rupert TJ (work in preparation) Combined effects of nonmetallic impurities and planned metallic dopants on grain boundary energy and strength Huang ZF, Chen F, Shen Q, Zhang L, Rupert TJ (work in preparation) Combined effects of nonmetallic impurities and planned metallic dopants on grain boundary energy and strength
83.
go back to reference Dieter GE (1986) Mechanical metallurgy, 3rd edn. McGraw-Hill, New York Dieter GE (1986) Mechanical metallurgy, 3rd edn. McGraw-Hill, New York
84.
go back to reference Chen N, Niu LL, Zhang Y, Shu X, Zhou HB, Jin S, Ran G, Lu GH, Gao F (2016) Energetics of vacancy segregation to [100] symmetric tilt grain boundaries in bcc tungsten. Sci Rep 6:36955-1–36955-12 Chen N, Niu LL, Zhang Y, Shu X, Zhou HB, Jin S, Ran G, Lu GH, Gao F (2016) Energetics of vacancy segregation to [100] symmetric tilt grain boundaries in bcc tungsten. Sci Rep 6:36955-1–36955-12
85.
go back to reference Zhou X, Song J (2017) Effect of local stress on hydrogen segregation at grain boundaries in metals. Mater Lett 196:123–127CrossRef Zhou X, Song J (2017) Effect of local stress on hydrogen segregation at grain boundaries in metals. Mater Lett 196:123–127CrossRef
86.
go back to reference Liu XY, Adams JB (1998) Grain-boundary segregation in Al–10% Mg alloys at hot working temperatures. Acta Mater 46:3467–3476CrossRef Liu XY, Adams JB (1998) Grain-boundary segregation in Al–10% Mg alloys at hot working temperatures. Acta Mater 46:3467–3476CrossRef
87.
go back to reference Wang D, Tan H, Li Y (2005) Multiple maxima of GFA in three adjacent eutectics in Zr–Cu–Al alloy system—a metallographic way to pinpoint the best glass forming alloys. Acta Mater 53:2969–2979CrossRef Wang D, Tan H, Li Y (2005) Multiple maxima of GFA in three adjacent eutectics in Zr–Cu–Al alloy system—a metallographic way to pinpoint the best glass forming alloys. Acta Mater 53:2969–2979CrossRef
88.
go back to reference Wang XD, Jiang QK, Cao QP, Bednarcik J, Franz H, Jiang JZ (2008) Atomic structure and glass forming ability of Cu46Zr46Al8 bulk metallic glass. J Appl Phys 104:093519-1–093519-5 Wang XD, Jiang QK, Cao QP, Bednarcik J, Franz H, Jiang JZ (2008) Atomic structure and glass forming ability of Cu46Zr46Al8 bulk metallic glass. J Appl Phys 104:093519-1–093519-5
89.
go back to reference Inoue A, Zhang W (2002) Formation, thermal stability and mechanical properties of Cu–Zr–Al bulk glassy alloys. Mater Trans 43:2921–2925CrossRef Inoue A, Zhang W (2002) Formation, thermal stability and mechanical properties of Cu–Zr–Al bulk glassy alloys. Mater Trans 43:2921–2925CrossRef
Metadata
Title
Atomistic modeling of interfacial segregation and structural transitions in ternary alloys
Authors
Yang Hu
Timothy J. Rupert
Publication date
19-11-2018
Publisher
Springer US
Published in
Journal of Materials Science / Issue 5/2019
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-3139-x

Other articles of this Issue 5/2019

Journal of Materials Science 5/2019 Go to the issue

Premium Partners