Skip to main content
Top
Published in: Knowledge and Information Systems 1/2018

25-10-2017 | Regular Paper

Auditing black-box models for indirect influence

Authors: Philip Adler, Casey Falk, Sorelle A. Friedler, Tionney Nix, Gabriel Rybeck, Carlos Scheidegger, Brandon Smith, Suresh Venkatasubramanian

Published in: Knowledge and Information Systems | Issue 1/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Data-trained predictive models see widespread use, but for the most part they are used as black boxes which output a prediction or score. It is therefore hard to acquire a deeper understanding of model behavior and in particular how different features influence the model prediction. This is important when interpreting the behavior of complex models or asserting that certain problematic attributes (such as race or gender) are not unduly influencing decisions. In this paper, we present a technique for auditing black-box models, which lets us study the extent to which existing models take advantage of particular features in the data set, without knowing how the models work. Our work focuses on the problem of indirect influence: how some features might indirectly influence outcomes via other, related features. As a result, we can find attribute influences even in cases where, upon further direct examination of the model, the attribute is not referred to by the model at all. Our approach does not require the black-box model to be retrained. This is important if, for example, the model is only accessible via an API, and contrasts our work with other methods that investigate feature influence such as feature selection. We present experimental evidence for the effectiveness of our procedure using a variety of publicly available data sets and models. We also validate our procedure using techniques from interpretable learning and feature selection, as well as against other black-box auditing procedures. To further demonstrate the effectiveness of this technique, we use it to audit a black-box recidivism prediction algorithm.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
This is a straightforward application of the standard min-cost flow problem.
 
2
This follows from the fact that the earthmover distance between two distributions on the line is the \(\ell _1\) difference between their cumulative density functions. In this case, it means that the earthmover distance is precisely the distance between the means.
 
6
Implemented using TensorFlow version 0.6.0: https://​www.​tensorflow.​org/​.
 
9
Weka’s REPTree, J48 and M5P models were used for this analysis with the default model-building parameters. J48 was used to predict categorical features and M5P was used for numerical features. REPTree can handle both categorical and numerical features.
 
10
Feature selection was implemented in Weka version 3.6.13 using WrapperSubsetEval and Greedy StepWise on J48 and SMO models. Default options were used, save for the generation of a complete ranking for all features.
 
11
The ProPublica methodology can be found here: https://​github.​com/​propublica/​compas-analysis.
 
Literature
1.
go back to reference Adler P, Falk C, Friedler SA, Rybeck G, Scheidegger C, Smith B, Venkatasubramanian S (2016) Auditing black-box models for indirect influence, In: Proceedings of the IEEE international conference on data mining (ICDM) Adler P, Falk C, Friedler SA, Rybeck G, Scheidegger C, Smith B, Venkatasubramanian S (2016) Auditing black-box models for indirect influence, In: Proceedings of the IEEE international conference on data mining (ICDM)
2.
go back to reference Agrawal R, Srikant R (2000) Privacy-preserving data mining, In: ACM Sigmod Record, vol 29. ACM, pp. 439–450 Agrawal R, Srikant R (2000) Privacy-preserving data mining, In: ACM Sigmod Record, vol 29. ACM, pp. 439–450
3.
go back to reference Angwin J, Larson J, Mattu S, Kirchner L (2016) Machine bias, ProPublica Angwin J, Larson J, Mattu S, Kirchner L (2016) Machine bias, ProPublica
4.
go back to reference Barakat N, Diederich J (2004) Learning-based rule-extraction from support vector machines. In: Proceedings of the 14th international conference on computer theory and applications Barakat N, Diederich J (2004) Learning-based rule-extraction from support vector machines. In: Proceedings of the 14th international conference on computer theory and applications
6.
go back to reference Bucilua C, Caruana R, Niculescu-Mizil A (2006) Model compression, In: Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, pp 535–541 Bucilua C, Caruana R, Niculescu-Mizil A (2006) Model compression, In: Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, pp 535–541
7.
go back to reference Casella G, Berger RL (2001) Statistical inference, 2nd edn. Cengage Learning, BostonMATH Casella G, Berger RL (2001) Statistical inference, 2nd edn. Cengage Learning, BostonMATH
8.
go back to reference Chandrashekar G, Sahin F (2014) A survey on feature selection methods. Comput Electr Eng 40:16–28CrossRef Chandrashekar G, Sahin F (2014) A survey on feature selection methods. Comput Electr Eng 40:16–28CrossRef
9.
go back to reference Chouldechova A (2016) Fair prediction with disparate impact: a study of bias in recidivism prediction instruments. In: Presented at the workshop on fairness, accountability, and transparency in machine learning (FATML) Chouldechova A (2016) Fair prediction with disparate impact: a study of bias in recidivism prediction instruments. In: Presented at the workshop on fairness, accountability, and transparency in machine learning (FATML)
10.
go back to reference Clark P, Niblett T (1989) The cn2 induction algorithm. Mach Learn 3(4):261–283 Clark P, Niblett T (1989) The cn2 induction algorithm. Mach Learn 3(4):261–283
11.
go back to reference Datta A, Sen S, Zick Y (2016) Algorithmic transparency via quantitative input influence: theory and experiments with learning systems. In: Proceedings of 37th IEEE symposium on security and privacy Datta A, Sen S, Zick Y (2016) Algorithmic transparency via quantitative input influence: theory and experiments with learning systems. In: Proceedings of 37th IEEE symposium on security and privacy
12.
go back to reference Duivesteijn W, Thaele J (2014) Understanding where your classifier does (not) work—the SCaPE model class for EMM, In: International conference on data mining (ICDM), pp 809–814 Duivesteijn W, Thaele J (2014) Understanding where your classifier does (not) work—the SCaPE model class for EMM, In: International conference on data mining (ICDM), pp 809–814
13.
go back to reference Feldman M, Friedler SA, Moeller J, Scheidegger C, Venkatasubramanian S (2015) Certifying and removing disparate impact. In: Proceedings of the 21st ACM KDD, pp 259–268 Feldman M, Friedler SA, Moeller J, Scheidegger C, Venkatasubramanian S (2015) Certifying and removing disparate impact. In: Proceedings of the 21st ACM KDD, pp 259–268
14.
go back to reference Freedman D, Diaconis P (1981) On the histogram as a density estimator: L 2 theory. Probab Theory Relat Fields 57(4):453–476MathSciNetMATH Freedman D, Diaconis P (1981) On the histogram as a density estimator: L 2 theory. Probab Theory Relat Fields 57(4):453–476MathSciNetMATH
15.
go back to reference Hastie T, Tibshirani R (1998) Classification by pairwise coupling. In: Jordan MI, Kearns MJ, Solla SA (eds) Advances in neural information processing systems, vol 10. MIT Press, Cambridge Hastie T, Tibshirani R (1998) Classification by pairwise coupling. In: Jordan MI, Kearns MJ, Solla SA (eds) Advances in neural information processing systems, vol 10. MIT Press, Cambridge
16.
go back to reference Henelius A, Puolamäki K, Boström H, Asker L, Papapetrou P (2014) A peek into the black box: exploring classifiers by randomization. Data Min Knowl Disc 28:1503–1529MathSciNetCrossRef Henelius A, Puolamäki K, Boström H, Asker L, Papapetrou P (2014) A peek into the black box: exploring classifiers by randomization. Data Min Knowl Disc 28:1503–1529MathSciNetCrossRef
17.
go back to reference Kabra M, Robie A, Branson K (2015) Understanding classifier errors by examining influential neighbors. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3917–3925 Kabra M, Robie A, Branson K (2015) Understanding classifier errors by examining influential neighbors. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3917–3925
18.
go back to reference Kaufman S, Rosset S, Perlich C, Stitelman O (2012) Leakage in data mining: Formulation, detection, and avoidance. ACM Trans Knowl Discov Data (TKDD) 6(4):15 Kaufman S, Rosset S, Perlich C, Stitelman O (2012) Leakage in data mining: Formulation, detection, and avoidance. ACM Trans Knowl Discov Data (TKDD) 6(4):15
19.
go back to reference Kleinberg J, Mullainathan S, Raghavan M (2017) Inherent trade-offs in the fair determination of risk scores, In: Proceedings of innovations in theoretical computer science (ITCS) Kleinberg J, Mullainathan S, Raghavan M (2017) Inherent trade-offs in the fair determination of risk scores, In: Proceedings of innovations in theoretical computer science (ITCS)
20.
go back to reference Le QV, Ranzato M, Monga R, Devin M, Chen K, Corrado GS, Dean J, Ng AY (2011) Building high-level features using large scale unsupervised learning. In: Proceedings of the ICML Le QV, Ranzato M, Monga R, Devin M, Chen K, Corrado GS, Dean J, Ng AY (2011) Building high-level features using large scale unsupervised learning. In: Proceedings of the ICML
21.
go back to reference Massey DS, Denton N (1993) American apartheid: segregation and the making of the underclass. Harvard University Press, Cambridge Massey DS, Denton N (1993) American apartheid: segregation and the making of the underclass. Harvard University Press, Cambridge
22.
23.
go back to reference Quinlan R (1993) C4.5: programs for machine learning. Morgan Kaufmann Publishers, San Mateo Quinlan R (1993) C4.5: programs for machine learning. Morgan Kaufmann Publishers, San Mateo
24.
go back to reference Raccuglia P, Elbert KC, Adler PDF, Falk C, Wenny MB, Mollo A, Zeller M, Friedler SA, Schrier J, Norquist AJ (2016) Machine-learning-assisted materials discovery using failed experiments. Nature 533:73–76CrossRef Raccuglia P, Elbert KC, Adler PDF, Falk C, Wenny MB, Mollo A, Zeller M, Friedler SA, Schrier J, Norquist AJ (2016) Machine-learning-assisted materials discovery using failed experiments. Nature 533:73–76CrossRef
25.
go back to reference Ribeiro MT, Singh S, Guestrin C (2016) Why Should I Trust You?: Explaining the Predictions of Any Classifier. In: Proceedings of the ACM KDD Ribeiro MT, Singh S, Guestrin C (2016) Why Should I Trust You?: Explaining the Predictions of Any Classifier. In: Proceedings of the ACM KDD
26.
go back to reference Romei A, Ruggieri S (2014) A multidisciplinary survey on discrimination analysis. Knowl Eng Rev 29:582–638CrossRef Romei A, Ruggieri S (2014) A multidisciplinary survey on discrimination analysis. Knowl Eng Rev 29:582–638CrossRef
27.
go back to reference Rubner Y, Tomasi C, Guibas LJ (1998) A metric for distributions with applications to image databases. In: 6th International conference on computer vision 1998. IEEE, pp 59–66 Rubner Y, Tomasi C, Guibas LJ (1998) A metric for distributions with applications to image databases. In: 6th International conference on computer vision 1998. IEEE, pp 59–66
28.
go back to reference Strobl C, Boulesteix A-L, Kneib T, Augustin T, Zeileis A (2008) Conditional variable importance for random forests. BMC Bioinf 9(1):1CrossRef Strobl C, Boulesteix A-L, Kneib T, Augustin T, Zeileis A (2008) Conditional variable importance for random forests. BMC Bioinf 9(1):1CrossRef
29.
go back to reference Strobl C, Boulesteix A-L, Zeileis A, Hothorn T (2007) Bias in random forest variable importance measures: illustrations, sources and a solution. BMC Bioinf 8(1):1CrossRef Strobl C, Boulesteix A-L, Zeileis A, Hothorn T (2007) Bias in random forest variable importance measures: illustrations, sources and a solution. BMC Bioinf 8(1):1CrossRef
30.
go back to reference Ustun B, Traca S, Rudin C (2014) Supersparse linear integer models for interpretable classification. Technical report 1306.6677, arXiv Ustun B, Traca S, Rudin C (2014) Supersparse linear integer models for interpretable classification. Technical report 1306.6677, arXiv
31.
go back to reference Zacarias OP, Bostrom H (2013) Comparing support vector regression and random forests for predicting malaria incidence in Mozambique. In: International conference on advances in ICT for emerging regions (ICTer), 2013. IEEE, pp 217–221 Zacarias OP, Bostrom H (2013) Comparing support vector regression and random forests for predicting malaria incidence in Mozambique. In: International conference on advances in ICT for emerging regions (ICTer), 2013. IEEE, pp 217–221
32.
go back to reference Zeiler MD, Fergus R (2014) Visualizing and understanding convolutional networks. In: Computer vision—ECCV 2014. Springer, pp 818–833 Zeiler MD, Fergus R (2014) Visualizing and understanding convolutional networks. In: Computer vision—ECCV 2014. Springer, pp 818–833
Metadata
Title
Auditing black-box models for indirect influence
Authors
Philip Adler
Casey Falk
Sorelle A. Friedler
Tionney Nix
Gabriel Rybeck
Carlos Scheidegger
Brandon Smith
Suresh Venkatasubramanian
Publication date
25-10-2017
Publisher
Springer London
Published in
Knowledge and Information Systems / Issue 1/2018
Print ISSN: 0219-1377
Electronic ISSN: 0219-3116
DOI
https://doi.org/10.1007/s10115-017-1116-3

Other articles of this Issue 1/2018

Knowledge and Information Systems 1/2018 Go to the issue

Premium Partner