Skip to main content
Top
Published in: Journal of Intelligent Manufacturing 2/2019

04-11-2016

Automatic marking point positioning of printed circuit boards based on template matching technique

Authors: Chung-Feng Jeffrey Kuo, Chun-Han Tsai, Wei-Ren Wang, Han-Cheng Wu

Published in: Journal of Intelligent Manufacturing | Issue 2/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The traditional global template matching is time consuming, has low accuracy, and cannot be adapted to rotation and scale change. The template matching technique proposed in this study improves the time, accuracy and robustness for printed circuit boards (PCB). In order to shorten the image positioning time, the image preprocessing is implemented on PCB image and the image blocks are labeled to obtain the tagged image, and the feature vector is extracted and the marking point region image is selected. The feature vector with rotation change and scale change robustness is extracted from the tagged image after labeling in the PCB image by using artificial neural network, combined with image moments for training. The marking point region image in the PCB image is selected. The scale value of the marking point region image is estimated by parametric template vector matching. The deflection angle of marking point region image is calculated by Hough transform. The obtained scale value and deflection angle value are used for fast template matching to determine the marking point positioning. The three-dimensional (3D) parabolic curve fitting is implemented in marking point positioning and adjacent pixel position to reach the sub-pixel level accuracy. The experiment showed that the proposed template matching technique for the PCB image with or without noise or angle rotation, the average position accuracy error of each translated image is lower than 7 \(\upmu \)m, and the error standard deviation is lower than 5 \(\upmu \)m. The rotation angle error average and standard deviation of angular error of Hough transform are lower than 0.2\(^{\circ }\), more accurate than orientation code (OC) method. The scale value estimation, relative error average and error standard deviation are lower than 0.004 and 0.006 for the image with or without noise. The average complete positioning time of PCB image at resolution of \(2500\times 2500\) is only 0.55 s, which is better than the 3.97 s of traditional global template matching. The results prove that the template matching technique of this study not only has sub-pixel level high accuracy and short computing time, but also has the robustness of rotation change and scale change interference. It can implement rapid, efficient and accurate positioning.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Adelson, E., Abderson, C., Bergen, J. R., Burt, P. J., & Ogden, J. M. (1984). Pyramid methods in image processing. RCA Engineer, 29(6), 33–41. Adelson, E., Abderson, C., Bergen, J. R., Burt, P. J., & Ogden, J. M. (1984). Pyramid methods in image processing. RCA Engineer, 29(6), 33–41.
go back to reference Burt, P. J. (1981). Fast filter transforms for image processing. Computer Graphics and Image Processing, 16(1), 20–51.CrossRef Burt, P. J. (1981). Fast filter transforms for image processing. Computer Graphics and Image Processing, 16(1), 20–51.CrossRef
go back to reference Burt, P. J., & Adelson, E. H. (1983). The Laplacian pyramid as a compact image code. IEEE Transactions on Communications, 31(4), 532–540.CrossRef Burt, P. J., & Adelson, E. H. (1983). The Laplacian pyramid as a compact image code. IEEE Transactions on Communications, 31(4), 532–540.CrossRef
go back to reference Chen, C. S., & Huang, C. L. (2016). A novel image alignment algorithm based on rotation-discriminating ring-shifted projection for automatic optical inspection. Applied Sciences, 6(5), 140.CrossRef Chen, C. S., & Huang, C. L. (2016). A novel image alignment algorithm based on rotation-discriminating ring-shifted projection for automatic optical inspection. Applied Sciences, 6(5), 140.CrossRef
go back to reference Choi, M. S., & Kim, W. Y. (2002). A novel two stage template matching method for rotation and illumination invariance. Pattern Recognition, 35(1), 119–129.CrossRef Choi, M. S., & Kim, W. Y. (2002). A novel two stage template matching method for rotation and illumination invariance. Pattern Recognition, 35(1), 119–129.CrossRef
go back to reference Hassaballah, M., & Awad, A. I. (2016). Detection and description of image features: An introduction. In Image feature detectors and descriptors (pp. 1–8). Switzerland: Springer. Hassaballah, M., & Awad, A. I. (2016). Detection and description of image features: An introduction. In Image feature detectors and descriptors (pp. 1–8). Switzerland: Springer.
go back to reference Kim, H. Y. (2010). Rotation-discriminating template matching based on Fourier coefficients of radial projections with robustness to scaling and partial occlusion. Pattern Recognition, 43(3), 859–872.CrossRef Kim, H. Y. (2010). Rotation-discriminating template matching based on Fourier coefficients of radial projections with robustness to scaling and partial occlusion. Pattern Recognition, 43(3), 859–872.CrossRef
go back to reference Kim, H. Y., & Araújo, S. A. (2007). Grayscale template-matching invariant to rotation, scale, translation, brightness and contrast. IEEE Pacific-Rim Symposium on Image and Video Technology, Lecture Notes in Computer Science, 4872(1), 100–113. Kim, H. Y., & Araújo, S. A. (2007). Grayscale template-matching invariant to rotation, scale, translation, brightness and contrast. IEEE Pacific-Rim Symposium on Image and Video Technology, Lecture Notes in Computer Science, 4872(1), 100–113.
go back to reference Lee, W. C., & Chen, C. H. (2012). A fast template matching method with rotation invariance by combining the circular the circular projection transform process and bounded partial correlation. IEEE Signal Processing Letter, 19(11), 737–740.CrossRef Lee, W. C., & Chen, C. H. (2012). A fast template matching method with rotation invariance by combining the circular the circular projection transform process and bounded partial correlation. IEEE Signal Processing Letter, 19(11), 737–740.CrossRef
go back to reference Li, Z. H., Liu, C., Cui, J., & Shen W. F. (2011). Improved rotation invariant template matching method using relative orientation codes. In Proceedings of the 30th Chinese Control Conference, Yanta (pp. 3119–3123). Li, Z. H., Liu, C., Cui, J., & Shen W. F. (2011). Improved rotation invariant template matching method using relative orientation codes. In Proceedings of the 30th Chinese Control Conference, Yanta (pp. 3119–3123).
go back to reference Lin, Y. H., & Chen, C. H. (2008). Template matching using the parametric template vector with translation, rotation and scale invariance. Pattern Recognition, 41(7), 2413–2421.CrossRef Lin, Y. H., & Chen, C. H. (2008). Template matching using the parametric template vector with translation, rotation and scale invariance. Pattern Recognition, 41(7), 2413–2421.CrossRef
go back to reference Lewis, J. P. (1995). Fast normalized cross correlation. Vision Interface, 10, 120–123. Lewis, J. P. (1995). Fast normalized cross correlation. Vision Interface, 10, 120–123.
go back to reference Lowe, D. G. (1999). Object recognition from local scale-invariant features. International Conference on Computer Vision, Canada, 2(1), 1150–1157. Lowe, D. G. (1999). Object recognition from local scale-invariant features. International Conference on Computer Vision, Canada, 2(1), 1150–1157.
go back to reference Park, Y. S., & Kim, W. Y. (1996). A fast template matching method using vector summation of sub-image projection. Proceedings KSPC, 96, 565–568. Park, Y. S., & Kim, W. Y. (1996). A fast template matching method using vector summation of sub-image projection. Proceedings KSPC, 96, 565–568.
go back to reference Qiao, N., & Sun, P. (2014). Study of improved Otsu algorithm and its ration evaluation analysis for PCB photoelectric image segmentation. Optik-International Journal for Light and Electron Optics, 125(17), 4784–4787.CrossRef Qiao, N., & Sun, P. (2014). Study of improved Otsu algorithm and its ration evaluation analysis for PCB photoelectric image segmentation. Optik-International Journal for Light and Electron Optics, 125(17), 4784–4787.CrossRef
go back to reference Szymanski, C., & Stemmer, M. R. (2015). Automated PCB inspection in small series production based on SIFT algorithm. In 2015 IEEE 24th International Symposium on Industrial Electronics (ISIE) (pp. 594–599). Szymanski, C., & Stemmer, M. R. (2015). Automated PCB inspection in small series production based on SIFT algorithm. In 2015 IEEE 24th International Symposium on Industrial Electronics (ISIE) (pp. 594–599).
go back to reference Tanaka, K., Sano, M., Ohara, S., & Okudaira, M. (2000). A parametric template method and its application to robust matching. IEEE Conference on Computer Vision and Pattern Recognition, Hilton Head Island, 1, 620–627. Tanaka, K., Sano, M., Ohara, S., & Okudaira, M. (2000). A parametric template method and its application to robust matching. IEEE Conference on Computer Vision and Pattern Recognition, Hilton Head Island, 1, 620–627.
go back to reference Ullah, F., & Kanekoi, S. (2004). Using orientation codes for rotation-invariant template matching. Pattern Recognition, 37(2), 201–209.CrossRef Ullah, F., & Kanekoi, S. (2004). Using orientation codes for rotation-invariant template matching. Pattern Recognition, 37(2), 201–209.CrossRef
go back to reference Wu, X., Yuan, P., Peng, Q., Ngo, C. W., & He, J. Y. (2016). Detection of bird nests in overhead catenary system images for high-speed rail. Pattern Recognition, 51, 242–254.CrossRef Wu, X., Yuan, P., Peng, Q., Ngo, C. W., & He, J. Y. (2016). Detection of bird nests in overhead catenary system images for high-speed rail. Pattern Recognition, 51, 242–254.CrossRef
go back to reference Zanganeh, O., Srinivasan, B., & Bhattacharjee, N. (2014). Partial fingerprint matching through region-based similarity. Digital lmage Computing: Techniques and Applications (DlCTA). In 2014 International Conference, IEEE (pp. 1–8). Zanganeh, O., Srinivasan, B., & Bhattacharjee, N. (2014). Partial fingerprint matching through region-based similarity. Digital lmage Computing: Techniques and Applications (DlCTA). In 2014 International Conference, IEEE (pp. 1–8).
go back to reference Zhang, Y., Wang, S., Sun, P., & Phillips, P. (2015). Pathological brain detection based on wavelet entropy and Hu moment invariants. Bio-medical Materials and Engineering, 26(s1), S1283–S1290.CrossRef Zhang, Y., Wang, S., Sun, P., & Phillips, P. (2015). Pathological brain detection based on wavelet entropy and Hu moment invariants. Bio-medical Materials and Engineering, 26(s1), S1283–S1290.CrossRef
go back to reference Zheng, Z., & Wang, H. (1999). Analysis of gray level corner detection. Pattern Recognition Letters, 20(2), 149–162.CrossRef Zheng, Z., & Wang, H. (1999). Analysis of gray level corner detection. Pattern Recognition Letters, 20(2), 149–162.CrossRef
Metadata
Title
Automatic marking point positioning of printed circuit boards based on template matching technique
Authors
Chung-Feng Jeffrey Kuo
Chun-Han Tsai
Wei-Ren Wang
Han-Cheng Wu
Publication date
04-11-2016
Publisher
Springer US
Published in
Journal of Intelligent Manufacturing / Issue 2/2019
Print ISSN: 0956-5515
Electronic ISSN: 1572-8145
DOI
https://doi.org/10.1007/s10845-016-1274-2

Other articles of this Issue 2/2019

Journal of Intelligent Manufacturing 2/2019 Go to the issue

Premium Partners