Skip to main content
Top
Published in: Artificial Life and Robotics 1/2022

29-01-2022 | Original Article

Automatic measurement of choroidal thickness and vasculature in optical coherence tomography images of eyes with retinitis pigmentosa

Authors: Tin Tin Khaing, Takayuki Okamoto, Chen Ye, Md. Abdul Mannan, Gen Miura, Hirotaka Yokouchi, Kazuya Nakano, Pakinee Aimmanee, Stanislav S. Makhanov, Hideaki Haneishi

Published in: Artificial Life and Robotics | Issue 1/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Retinitis pigmentosa (RP) is a group of genetic disorders, characterized by degeneration of photoreceptor cells which is the main cause of choroidal thinning. It is one of the leading causes of blindness worldwide. Thus, an investigation of choroidal changes is required for a better understanding of disease and diagnosis of RP. In this paper, we propose an automatic technique for measuring the choroidal parameters in optical coherence tomography (OCT) images of eyes with RP. The parameters include the total choroidal area (TCA), luminal area (LA), stromal area (SA), and choroidal thickness (CT). We applied our recently proposed, dense dilated U-Net segmentation model, called ChoroidNET, for segmenting the choroid layer and choroidal vessels for our RP dataset. Choroid segmentation is an important task since the measurement results depend on it. Comparison with other state-of-the-art models shows that ChoroidNET provides a better quantitative and qualitative segmentation of the choroid layer and choroidal vessels. Next, we measure the choroidal parameters based on the segmentation results of ChoroidNET. The proposed method achieves high reliability with an intraclass correlation coefficient (0.961, 0.940, 0.826, 0.916) for TCA, LA, SA, and CT, respectively.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Milam AH, Li ZY, Fariss RN (1998) Histopathology of the human retina in retinitis pigmentosa. Prog Retina Eye Res 17(2):175–205CrossRef Milam AH, Li ZY, Fariss RN (1998) Histopathology of the human retina in retinitis pigmentosa. Prog Retina Eye Res 17(2):175–205CrossRef
2.
go back to reference Berson EL (1993) Retinitis pigmentosa: the Friedenwald lecture. Investig Ophthalmol Vis Sci 34(5):1659–1676 Berson EL (1993) Retinitis pigmentosa: the Friedenwald lecture. Investig Ophthalmol Vis Sci 34(5):1659–1676
4.
go back to reference Konieczka K, Flammer AJ, Todorova M, Meyer P, Flammer J (2012) Retinitis pigmentosa and ocular blood flow. EPMA J 3(1):17CrossRef Konieczka K, Flammer AJ, Todorova M, Meyer P, Flammer J (2012) Retinitis pigmentosa and ocular blood flow. EPMA J 3(1):17CrossRef
5.
go back to reference Egawa M, Mitamura Y, Niki M, Sano H, Miura G, Chiba A, Yamamoto S, Sonoda S, Sakamoto T (2018) Correlations between choroidal structures and visual functions in eyes with retinitis pigmentosa. Retina J Retinal Vitreous Dis 39(12):2399–2409 Egawa M, Mitamura Y, Niki M, Sano H, Miura G, Chiba A, Yamamoto S, Sonoda S, Sakamoto T (2018) Correlations between choroidal structures and visual functions in eyes with retinitis pigmentosa. Retina J Retinal Vitreous Dis 39(12):2399–2409
6.
go back to reference Cai CX, Locke KG, Ramachandran R, Birch DG, Hood DC (2014) A comparison of progressive loss of the ellipsoid zone (EZ) band in autosomal dominant and X-linked retinitis pigmentosa. Investig Ophthalmol Vis Sci 55:7417–7422CrossRef Cai CX, Locke KG, Ramachandran R, Birch DG, Hood DC (2014) A comparison of progressive loss of the ellipsoid zone (EZ) band in autosomal dominant and X-linked retinitis pigmentosa. Investig Ophthalmol Vis Sci 55:7417–7422CrossRef
7.
go back to reference Chiba A, Miura G, Baba T, Yamamoto S (2019) Determination of length of interdigitation zone by optical coherence tomography and retinal sensitivity by microperimetry and their relationship to progression of retinitis pigmentosa. Biomed Res Int 2019:1217270CrossRef Chiba A, Miura G, Baba T, Yamamoto S (2019) Determination of length of interdigitation zone by optical coherence tomography and retinal sensitivity by microperimetry and their relationship to progression of retinitis pigmentosa. Biomed Res Int 2019:1217270CrossRef
8.
go back to reference Son G, Lee S, Kim YJ, Lee JY, Kim J, Yoon YH (2019) Correlation between visual function and structural characteristics of the macula in advanced retinitis pigmentosa. Ophthalmologica 242(1):22–30CrossRef Son G, Lee S, Kim YJ, Lee JY, Kim J, Yoon YH (2019) Correlation between visual function and structural characteristics of the macula in advanced retinitis pigmentosa. Ophthalmologica 242(1):22–30CrossRef
9.
go back to reference Ayton LN, Franzco RHG, Luu CD (2013) Choroidal thickness profiles in retinitis pigmentosa. Clin Exp Ophthalmol 41:396–403CrossRef Ayton LN, Franzco RHG, Luu CD (2013) Choroidal thickness profiles in retinitis pigmentosa. Clin Exp Ophthalmol 41:396–403CrossRef
10.
go back to reference Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito CA, Fujimoto JG (1991) Optical coherence tomography. Science 254(5035):1178–1181CrossRef Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito CA, Fujimoto JG (1991) Optical coherence tomography. Science 254(5035):1178–1181CrossRef
11.
go back to reference Jaffe GJ, Caprioli J (2004) Optical coherence tomography to detect and manage retinal disease and glaucoma. Am J Ophthalmol 137(1):156–169CrossRef Jaffe GJ, Caprioli J (2004) Optical coherence tomography to detect and manage retinal disease and glaucoma. Am J Ophthalmol 137(1):156–169CrossRef
12.
go back to reference Sezer T, Altinisik M, Koytak AK, Ozdemir MH (2016) The choroid and optical coherence tomography. Turk J Ophthalmol 46:30–37CrossRef Sezer T, Altinisik M, Koytak AK, Ozdemir MH (2016) The choroid and optical coherence tomography. Turk J Ophthalmol 46:30–37CrossRef
13.
go back to reference Spaide RF, KoizumiPozonni HMC (2008) Enhanced depth imaging spectral-domain optical coherence tomography. Am J Ophthalmol 146(4):496–500CrossRef Spaide RF, KoizumiPozonni HMC (2008) Enhanced depth imaging spectral-domain optical coherence tomography. Am J Ophthalmol 146(4):496–500CrossRef
14.
go back to reference Orduna-Azcona J, Perez-Fernandez E, Guadilla AM, Manuel-Triantafilo SD, Modamio L, Gili P (2021) Sensitivity and specificity of choroidal thickness measurement by EDI-OCT for central serous chorioretinopathy diagnosis. Int Ophthalmol 41:257–264CrossRef Orduna-Azcona J, Perez-Fernandez E, Guadilla AM, Manuel-Triantafilo SD, Modamio L, Gili P (2021) Sensitivity and specificity of choroidal thickness measurement by EDI-OCT for central serous chorioretinopathy diagnosis. Int Ophthalmol 41:257–264CrossRef
15.
go back to reference Egawa M, Mitamura Y, Akaiwa K, Semba K, Kinoshita T, Uchino E, Sonoda S, Sakamoto T (2016) Changes of choroidal structure after corticosteroid treatment in eyes with Vogt–Koyanagi–Harada disease. Br J Ophthalmol 100:1646–1650CrossRef Egawa M, Mitamura Y, Akaiwa K, Semba K, Kinoshita T, Uchino E, Sonoda S, Sakamoto T (2016) Changes of choroidal structure after corticosteroid treatment in eyes with Vogt–Koyanagi–Harada disease. Br J Ophthalmol 100:1646–1650CrossRef
18.
go back to reference Devalla SK, Renukanand PK, Sreedhar BK, Subramanian G, Zhang L, Perera S, Mari J, Chin KS, Tun TA, Strouthidis NG, Aung T, Thiery AH, Girard MJA (2018) DRUNET: a dilated-residual U-Net deep learning network to segment optic nerve head tissues in optical coherence tomography images. Biomed Opt Express 9(7):3244–3264CrossRef Devalla SK, Renukanand PK, Sreedhar BK, Subramanian G, Zhang L, Perera S, Mari J, Chin KS, Tun TA, Strouthidis NG, Aung T, Thiery AH, Girard MJA (2018) DRUNET: a dilated-residual U-Net deep learning network to segment optic nerve head tissues in optical coherence tomography images. Biomed Opt Express 9(7):3244–3264CrossRef
19.
go back to reference Zheng G, Jiang Y, Shi C, Miao H, Yu X, Wang Y, Chen S, Lin Z, Wang W, Lu F, Shen M (2021) Deep learning algorithms to segment and quantify the choroidal thickness and vasculature in swept-source optical coherence tomography images. J Innov Opt Health Sci 14(1):2140002CrossRef Zheng G, Jiang Y, Shi C, Miao H, Yu X, Wang Y, Chen S, Lin Z, Wang W, Lu F, Shen M (2021) Deep learning algorithms to segment and quantify the choroidal thickness and vasculature in swept-source optical coherence tomography images. J Innov Opt Health Sci 14(1):2140002CrossRef
21.
go back to reference Esmaeelpour M, Kajic V, Zabihian B et al (2014) Choroidal Haller’s and Sattler’s layer thickness measurement using 3-dimensional 1060-nm optical coherence tomography. PLoS ONE 9(6):e99690CrossRef Esmaeelpour M, Kajic V, Zabihian B et al (2014) Choroidal Haller’s and Sattler’s layer thickness measurement using 3-dimensional 1060-nm optical coherence tomography. PLoS ONE 9(6):e99690CrossRef
22.
go back to reference Kajic V, Esmaeelpour M, Povazay B, Marshall D, Rosin PL, Drexler W (2012) Automated choroidal segmentation of 1060 nm OCT in healthy and pathologic eyes using a statistical model. Biomed Opt Express 3(1):86–103CrossRef Kajic V, Esmaeelpour M, Povazay B, Marshall D, Rosin PL, Drexler W (2012) Automated choroidal segmentation of 1060 nm OCT in healthy and pathologic eyes using a statistical model. Biomed Opt Express 3(1):86–103CrossRef
23.
go back to reference Kajic V, Esmaeelpour M, Glittenberg C, Karus MF, Honegger J, Othara R, Binder S, Fujimoto JG, Drexler W (2013) Automated three-dimensional choroidal vessel segmentation of 3D 1060nm OCT retinal data. Biomed Opt Express 4(1):134–150CrossRef Kajic V, Esmaeelpour M, Glittenberg C, Karus MF, Honegger J, Othara R, Binder S, Fujimoto JG, Drexler W (2013) Automated three-dimensional choroidal vessel segmentation of 3D 1060nm OCT retinal data. Biomed Opt Express 4(1):134–150CrossRef
26.
go back to reference Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention (MICCAI), pp 234–241 Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention (MICCAI), pp 234–241
27.
go back to reference Kanopoulos N, Vasanthavada N, Baker RL (1988) Design of an image edge detection filter using the Sobel operator. IEEE J Solid State Circuits 23(2):358–367CrossRef Kanopoulos N, Vasanthavada N, Baker RL (1988) Design of an image edge detection filter using the Sobel operator. IEEE J Solid State Circuits 23(2):358–367CrossRef
28.
go back to reference Zhou Z, Siddiquee MMR, Tajbakhsh N, Liang J (2018) U-Net++: a nested architecture for medical image segmentation. In: Computer vision and pattern recognition. arXiv:1807.10165[cs.CV] Zhou Z, Siddiquee MMR, Tajbakhsh N, Liang J (2018) U-Net++: a nested architecture for medical image segmentation. In: Computer vision and pattern recognition. arXiv:​1807.​10165[cs.CV]
29.
go back to reference Stralen KJV, Jager KJ, Zoccali C, Dekker FW (2008) Agreement between methods. Kidney Int 74:1116–1120CrossRef Stralen KJV, Jager KJ, Zoccali C, Dekker FW (2008) Agreement between methods. Kidney Int 74:1116–1120CrossRef
30.
go back to reference Liu G, Liu X, Li H, DuWang QF (2016) Optical coherence tomography analysis of retina in retinitis pigmentosa patients. Ophthalmic Res 56:111–122CrossRef Liu G, Liu X, Li H, DuWang QF (2016) Optical coherence tomography analysis of retina in retinitis pigmentosa patients. Ophthalmic Res 56:111–122CrossRef
Metadata
Title
Automatic measurement of choroidal thickness and vasculature in optical coherence tomography images of eyes with retinitis pigmentosa
Authors
Tin Tin Khaing
Takayuki Okamoto
Chen Ye
Md. Abdul Mannan
Gen Miura
Hirotaka Yokouchi
Kazuya Nakano
Pakinee Aimmanee
Stanislav S. Makhanov
Hideaki Haneishi
Publication date
29-01-2022
Publisher
Springer Japan
Published in
Artificial Life and Robotics / Issue 1/2022
Print ISSN: 1433-5298
Electronic ISSN: 1614-7456
DOI
https://doi.org/10.1007/s10015-022-00737-y

Other articles of this Issue 1/2022

Artificial Life and Robotics 1/2022 Go to the issue