Skip to main content
Top
Published in: Arabian Journal for Science and Engineering 2/2022

13-09-2021 | Research Article-Computer Engineering and Computer Science

Back to Basics: An Interpretable Multi-Class Grade Prediction Framework

Author: Basma Alharbi

Published in: Arabian Journal for Science and Engineering | Issue 2/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Next-term grade prediction is a challenging problem. The objective of this problem is to predict students grades in new courses, given their grades in courses they have previously taken. Adopting various machine learning algorithms is a very common and straightforward approach to tackling this problem. However, such models are very difficult to interpret. That is, it is difficult to explain to a student (or a teacher) why the model predicted grade B for a given student for example. In this work, we shed light on the importance of building interpretable models for educational data mining tasks. Specifically, we propose a novel interpretable framework for multi-class grade prediction that is based on an optimal rule-list mining algorithm. Additionally, we evaluate our proposed framework on two private datasets and compare our results with baseline models. Our findings show that our proposed framework is capable of achieving higher prediction and interpretability values when compared to black-box models.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
In the literature, interpretability and explainability are sometimes used interchangeably. However, in this work, we emphasize the distinction between the two terms and use the same definitions as [13]. In [26], on the other hand, the term ‘simulatability’ is used to indicate the same concept as interpretability in this work and Rudin [13] and Baker [14]. In some work, such as Freitas [12], the notion of interpretability is referred to as comprehensibility.
 
2
The datasets cannot be shared with the public for privacy reasons.
 
3
Note that in GPD2, due to the utilized data collection mechanism, these course-oriented features cannot be computed from previous course data, but rather from the current one.
 
Literature
1.
go back to reference Sweeney, M.; Lester, J.; Rangwala, H.: Next-term student grade prediction. In: 2015 IEEE International Conference on Big Data (Big Data), pp. 970–975. IEEE (2015) Sweeney, M.; Lester, J.; Rangwala, H.: Next-term student grade prediction. In: 2015 IEEE International Conference on Big Data (Big Data), pp. 970–975. IEEE (2015)
2.
go back to reference Sandoval, A.; Gonzalez, C.; Alarcon, R.; Pichara, K.; Montenegro, M.: Centralized student performance prediction in large courses based on low-cost variables in an institutional context. Internet Higher Edu. 37, 76–89 (2018)CrossRef Sandoval, A.; Gonzalez, C.; Alarcon, R.; Pichara, K.; Montenegro, M.: Centralized student performance prediction in large courses based on low-cost variables in an institutional context. Internet Higher Edu. 37, 76–89 (2018)CrossRef
3.
go back to reference Akçapınar, G.; Hasnine, M.N.; Majumdar, R.; Flanagan, B.; Ogata, H.: Developing an early-warning system for spotting at-risk students by using ebook interaction logs. Smart Learn. Environ. 6(1), 4 (2019)CrossRef Akçapınar, G.; Hasnine, M.N.; Majumdar, R.; Flanagan, B.; Ogata, H.: Developing an early-warning system for spotting at-risk students by using ebook interaction logs. Smart Learn. Environ. 6(1), 4 (2019)CrossRef
5.
go back to reference Bratko, I.: Machine learning: between accuracy and interpretability. In: Learning, networks and statistics, pp. 163–177. Springer (1997) Bratko, I.: Machine learning: between accuracy and interpretability. In: Learning, networks and statistics, pp. 163–177. Springer (1997)
6.
go back to reference Dawes, R.M.: The robust beauty of improper linear models in decision making. Am. Psychol. 34(7), 571 (1979)CrossRef Dawes, R.M.: The robust beauty of improper linear models in decision making. Am. Psychol. 34(7), 571 (1979)CrossRef
7.
go back to reference Holte, R.C.: Very simple classification rules perform well on most commonly used datasets. Mach. Learn. 11(1), 63–90 (1993)CrossRef Holte, R.C.: Very simple classification rules perform well on most commonly used datasets. Mach. Learn. 11(1), 63–90 (1993)CrossRef
8.
go back to reference Giraud-Carrier, C.: Beyond predictive accuracy: what. In: Proceedings of the ECML-98 Workshop on Upgrading Learning to Meta-Level: Model Selection and Data Transformation, pp. 78–85 (1998) Giraud-Carrier, C.: Beyond predictive accuracy: what. In: Proceedings of the ECML-98 Workshop on Upgrading Learning to Meta-Level: Model Selection and Data Transformation, pp. 78–85 (1998)
9.
go back to reference Rüping, S.: Learning interpretable models. Ph.D. Thesis (2006) Rüping, S.: Learning interpretable models. Ph.D. Thesis (2006)
11.
go back to reference Vellido, A., Martín-Guerrero, J.D., Lisboa, P.J.G.: Making machine learning models interpretable. In: ESANN, vol. 12, pp. 163–172. Citeseer (2012) Vellido, A., Martín-Guerrero, J.D., Lisboa, P.J.G.: Making machine learning models interpretable. In: ESANN, vol. 12, pp. 163–172. Citeseer (2012)
12.
go back to reference Freitas, A.A.: Comprehensible classification models: a position paper. ACM SIGKDD Exp. Newsl. 15(1), 1–10 (2014)CrossRef Freitas, A.A.: Comprehensible classification models: a position paper. ACM SIGKDD Exp. Newsl. 15(1), 1–10 (2014)CrossRef
13.
go back to reference Rudin, C.: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat. Mach. Intell. 1(5), 206–215 (2019)CrossRef Rudin, C.: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat. Mach. Intell. 1(5), 206–215 (2019)CrossRef
14.
go back to reference Baker, R.S.: Challenges for the future of educational data mining: the baker learning analytics prizes. JEDM|J. Edu. Data Min. 11(1), 1–17 (2019) Baker, R.S.: Challenges for the future of educational data mining: the baker learning analytics prizes. JEDM|J. Edu. Data Min. 11(1), 1–17 (2019)
15.
go back to reference Alamri, R.; Alharbi, B.: Explainable student performance prediction models: a systematic review. IEEE Access (2021) Alamri, R.; Alharbi, B.: Explainable student performance prediction models: a systematic review. IEEE Access (2021)
16.
go back to reference Miller, G.A.: The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychol. Rev. 63(2), 81 (1956)CrossRef Miller, G.A.: The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychol. Rev. 63(2), 81 (1956)CrossRef
17.
go back to reference Cowan, N.: The magical mystery four: how is working memory capacity limited, and why? Curr. Dir. Psychol. Sci. 19(1), 51–57 (2010)MathSciNetCrossRef Cowan, N.: The magical mystery four: how is working memory capacity limited, and why? Curr. Dir. Psychol. Sci. 19(1), 51–57 (2010)MathSciNetCrossRef
18.
go back to reference Angelino, E.; Larus-Stone, N.; Alabi, D.; Seltzer, M.; Rudin, C.: Learning certifiably optimal rule lists for categorical data. J. Mach. Learn. Res. 18(1), 8753–8830 (2017)MathSciNetMATH Angelino, E.; Larus-Stone, N.; Alabi, D.; Seltzer, M.; Rudin, C.: Learning certifiably optimal rule lists for categorical data. J. Mach. Learn. Res. 18(1), 8753–8830 (2017)MathSciNetMATH
19.
go back to reference Aldowah, H.; Al-Samarraie, H.; Fauzy, W.M.: Educational data mining and learning analytics for 21st century higher education: a review and synthesis. Telemat. Inform. 37, 13–49 (2019)CrossRef Aldowah, H.; Al-Samarraie, H.; Fauzy, W.M.: Educational data mining and learning analytics for 21st century higher education: a review and synthesis. Telemat. Inform. 37, 13–49 (2019)CrossRef
20.
go back to reference Papamitsiou, Z.; Economides, A.A.: Learning analytics and educational data mining in practice: a systematic literature review of empirical evidence. J. Edu. Technol. Soc. 17(4), 49–64 (2014) Papamitsiou, Z.; Economides, A.A.: Learning analytics and educational data mining in practice: a systematic literature review of empirical evidence. J. Edu. Technol. Soc. 17(4), 49–64 (2014)
21.
go back to reference Peña-Ayala, A.: Educational data mining: a survey and a data mining-based analysis of recent works. Expert Syst. Appl. 41(4), 1432–1462 (2014)CrossRef Peña-Ayala, A.: Educational data mining: a survey and a data mining-based analysis of recent works. Expert Syst. Appl. 41(4), 1432–1462 (2014)CrossRef
22.
go back to reference Kamal, P.; Ahuja, S.: Academic performance prediction using data mining techniques: identification of influential factors effecting the academic performance in undergrad professional course. In: Harmony Search and Nature Inspired Optimization Algorithms, pp. 835–843. Springer (2019) Kamal, P.; Ahuja, S.: Academic performance prediction using data mining techniques: identification of influential factors effecting the academic performance in undergrad professional course. In: Harmony Search and Nature Inspired Optimization Algorithms, pp. 835–843. Springer (2019)
23.
go back to reference Su, Y.; Liu, Q.; Liu, Q.,;Huang, Z.; Yin, Y.; Chen, E.; Ding, C.; Wei, S.; Hu, G.: Exercise-enhanced sequential modeling for student performance prediction. In: 32nd AAAI Conference on Artificial Intelligence (2018) Su, Y.; Liu, Q.; Liu, Q.,;Huang, Z.; Yin, Y.; Chen, E.; Ding, C.; Wei, S.; Hu, G.: Exercise-enhanced sequential modeling for student performance prediction. In: 32nd AAAI Conference on Artificial Intelligence (2018)
24.
go back to reference Macfadyen, L.P.; Dawson, S.: Mining LMS data to develop an “early warning system” for educators: a proof of concept. Comput. Edu. 54(2), 588–599 (2010) Macfadyen, L.P.; Dawson, S.: Mining LMS data to develop an “early warning system” for educators: a proof of concept. Comput. Edu. 54(2), 588–599 (2010)
25.
go back to reference Murdoch, W.J.; Singh, C.; Kumbier, K.; Abbasi-Asl, R.; Yu, B.: Definitions, methods, and applications in interpretable machine learning. Proc. Natl. Acad. Sci. 116(44), 22071–22080 (2019)MathSciNetCrossRef Murdoch, W.J.; Singh, C.; Kumbier, K.; Abbasi-Asl, R.; Yu, B.: Definitions, methods, and applications in interpretable machine learning. Proc. Natl. Acad. Sci. 116(44), 22071–22080 (2019)MathSciNetCrossRef
26.
go back to reference Murdoch, W.J.; Singh, C.; Kumbier, K.; Abbasi-Asl, R.; Yu, B.: Interpretable machine learning: definitions, methods, and applications. arXiv:1901.04592 (2019) Murdoch, W.J.; Singh, C.; Kumbier, K.; Abbasi-Asl, R.; Yu, B.: Interpretable machine learning: definitions, methods, and applications. arXiv:​1901.​04592 (2019)
27.
go back to reference Arrieta, A.B.; Díaz-Rodríguez, N.; Del Ser, J.; Bennetot, A.; Tabik, S.; Barbado, A.; García, S.; Gil-López, S.; Molina, D.; Benjamins, R.; Chatila, R.: Explainable artificial intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible AI. Inf. Fus. 58, 82–115 (2020)CrossRef Arrieta, A.B.; Díaz-Rodríguez, N.; Del Ser, J.; Bennetot, A.; Tabik, S.; Barbado, A.; García, S.; Gil-López, S.; Molina, D.; Benjamins, R.; Chatila, R.: Explainable artificial intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible AI. Inf. Fus. 58, 82–115 (2020)CrossRef
28.
go back to reference Bhatt, U.; Xiang, A.; Sharma, S.; Weller, A.; Taly, A.; Jia, Y.; Ghosh, J.; Puri, R.; Moura, J.M.; Eckersley, P.: Explainable machine learning in deployment. In: Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency, pp. 648–657 (2020) Bhatt, U.; Xiang, A.; Sharma, S.; Weller, A.; Taly, A.; Jia, Y.; Ghosh, J.; Puri, R.; Moura, J.M.; Eckersley, P.: Explainable machine learning in deployment. In: Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency, pp. 648–657 (2020)
29.
go back to reference Lakkaraju, H.; Bastani, O.: “how do i fool you?” manipulating user trust via misleading black box explanations. In: Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society, pp. 79–85 (2020) Lakkaraju, H.; Bastani, O.: “how do i fool you?” manipulating user trust via misleading black box explanations. In: Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society, pp. 79–85 (2020)
30.
go back to reference Proença, H.M.; van Leeuwen, M.: Interpretable multiclass classification by mdl-based rule lists. Inf. Sci. 512, 1372–1393 (2020)CrossRef Proença, H.M.; van Leeuwen, M.: Interpretable multiclass classification by mdl-based rule lists. Inf. Sci. 512, 1372–1393 (2020)CrossRef
31.
go back to reference Yang, H.; Rudin, C.; Seltzer, M.: Scalable Bayesian rule lists. In: Proceedings of the 34th International Conference on Machine Learning, vol. 70, pp. 3921–3930. JMLR. org (2017) Yang, H.; Rudin, C.; Seltzer, M.: Scalable Bayesian rule lists. In: Proceedings of the 34th International Conference on Machine Learning, vol. 70, pp. 3921–3930. JMLR. org (2017)
32.
go back to reference Rudin, C.; Ertekin, Ş.: Learning customized and optimized lists of rules with mathematical programming. Math. Progr. Comput. 10(4), 659–702 (2018) Rudin, C.; Ertekin, Ş.: Learning customized and optimized lists of rules with mathematical programming. Math. Progr. Comput. 10(4), 659–702 (2018)
33.
go back to reference Letham, B.; Rudin, C.; McCormick, T.H.; Madigan, D.; et al.: Interpretable classifiers using rules and Bayesian analysis: building a better stroke prediction model. Ann. Appl. Stat. 9(3), 1350–1371 (2015)MathSciNetCrossRef Letham, B.; Rudin, C.; McCormick, T.H.; Madigan, D.; et al.: Interpretable classifiers using rules and Bayesian analysis: building a better stroke prediction model. Ann. Appl. Stat. 9(3), 1350–1371 (2015)MathSciNetCrossRef
34.
go back to reference Cano, A.; Zafra, A.; Ventura, S.N.: An interpretable classification rule mining algorithm. Inf. Sci. 240, 1–20 (2013)CrossRef Cano, A.; Zafra, A.; Ventura, S.N.: An interpretable classification rule mining algorithm. Inf. Sci. 240, 1–20 (2013)CrossRef
35.
go back to reference Molnar, C.: Interpretable machine learning. Lulu.com (2019) Molnar, C.: Interpretable machine learning. Lulu.com (2019)
36.
go back to reference Zhang, W.; Zhou, Y.; Yi, B.: An interpretable online learner’s performance prediction model based on learning analytics. In: Proceedings of the 2019 11th International Conference on Education Technology and Computers, pp. 148–154 (2019) Zhang, W.; Zhou, Y.; Yi, B.: An interpretable online learner’s performance prediction model based on learning analytics. In: Proceedings of the 2019 11th International Conference on Education Technology and Computers, pp. 148–154 (2019)
37.
go back to reference Meca, I.; Mollá-Campello, N.; Rabasa, A.: A new methodology for early warning of critical academic performance, based on discrete predictive models. In: Proceedings of the 7th International Conference on Technological Ecosystems for Enhancing Multiculturality, pp. 680–685 (2019) Meca, I.; Mollá-Campello, N.; Rabasa, A.: A new methodology for early warning of critical academic performance, based on discrete predictive models. In: Proceedings of the 7th International Conference on Technological Ecosystems for Enhancing Multiculturality, pp. 680–685 (2019)
38.
go back to reference Helal, S.; Li, J.; Liu, L.; Ebrahimie, E.; Dawson, S.; Murray, D.J.; Long, Q.: Predicting academic performance by considering student heterogeneity. Knowl.-Based Syst. 161, 134–146 (2018) Helal, S.; Li, J.; Liu, L.; Ebrahimie, E.; Dawson, S.; Murray, D.J.; Long, Q.: Predicting academic performance by considering student heterogeneity. Knowl.-Based Syst. 161, 134–146 (2018)
39.
go back to reference Villagrá-Arnedo, C.J.; Gallego-Durán, F.J.; Llorens-Largo, F.; Compañ-Rosique, P.; Satorre-Cuerda, R.; Molina-Carmona, R.: Improving the expressiveness of black-box models for predicting student performance. Comput. Hum. Behav. 72, 621–631 (2017)CrossRef Villagrá-Arnedo, C.J.; Gallego-Durán, F.J.; Llorens-Largo, F.; Compañ-Rosique, P.; Satorre-Cuerda, R.; Molina-Carmona, R.: Improving the expressiveness of black-box models for predicting student performance. Comput. Hum. Behav. 72, 621–631 (2017)CrossRef
40.
go back to reference Xing, W.; Guo, R.; Petakovic, E.; Goggins, S.: Participation-based student final performance prediction model through interpretable genetic programming: integrating learning analytics, educational data mining and theory. Comput. Hum. Behav. 47, 168–181 (2015)CrossRef Xing, W.; Guo, R.; Petakovic, E.; Goggins, S.: Participation-based student final performance prediction model through interpretable genetic programming: integrating learning analytics, educational data mining and theory. Comput. Hum. Behav. 47, 168–181 (2015)CrossRef
41.
go back to reference Ya-Han, H.; Lo, C.-L.; Shih, S.-P.: Developing early warning systems to predict students’ online learning performance. Comput. Hum. Behav. 36, 469–478 (2014) Ya-Han, H.; Lo, C.-L.; Shih, S.-P.: Developing early warning systems to predict students’ online learning performance. Comput. Hum. Behav. 36, 469–478 (2014)
42.
go back to reference Polyzou, A.; Karypis, G.: Feature extraction for classifying students based on their academic performance. International Educational Data Mining Society (2018) Polyzou, A.; Karypis, G.: Feature extraction for classifying students based on their academic performance. International Educational Data Mining Society (2018)
43.
go back to reference Fayyad, U.; Irani, K.: Multi-interval discretization of continuous-valued attributes for classification learning (1993) Fayyad, U.; Irani, K.: Multi-interval discretization of continuous-valued attributes for classification learning (1993)
44.
go back to reference Flach, P.: Machine learning: the art and science of algorithms that make sense of data. Cambridge University Press (2012) Flach, P.: Machine learning: the art and science of algorithms that make sense of data. Cambridge University Press (2012)
45.
go back to reference Brodersen, K.H.; Ong, C.S.; Stephan, K.E.; Buhmann, J.M.: The balanced accuracy and its posterior distribution. In: 2010 20th International Conference on Pattern Recognition, pp. 3121–3124. IEEE (2010) Brodersen, K.H.; Ong, C.S.; Stephan, K.E.; Buhmann, J.M.: The balanced accuracy and its posterior distribution. In: 2010 20th International Conference on Pattern Recognition, pp. 3121–3124. IEEE (2010)
46.
go back to reference García, S.; Fernández, A.; Luengo, J.; Herrera, F.: A study of statistical techniques and performance measures for genetics-based machine learning: accuracy and interpretability. Soft. Comput. 13(10), 959 (2009)CrossRef García, S.; Fernández, A.; Luengo, J.; Herrera, F.: A study of statistical techniques and performance measures for genetics-based machine learning: accuracy and interpretability. Soft. Comput. 13(10), 959 (2009)CrossRef
47.
go back to reference Nauck, D.D: Measuring interpretability in rule-based classification systems. In: The 12th IEEE International Conference on Fuzzy Systems, 2003. FUZZ’03, vol. 1, pp. 196–201. IEEE (2003) Nauck, D.D: Measuring interpretability in rule-based classification systems. In: The 12th IEEE International Conference on Fuzzy Systems, 2003. FUZZ’03, vol. 1, pp. 196–201. IEEE (2003)
48.
go back to reference Fan, R.-E.; Chang, K.-W.; Hsieh, C.-J.; Lin, C.-J.: Liblinear: a library for large linear classification. J. Mach. Learn. Rese. 9, 1871–1874 (2008)MATH Fan, R.-E.; Chang, K.-W.; Hsieh, C.-J.; Lin, C.-J.: Liblinear: a library for large linear classification. J. Mach. Learn. Rese. 9, 1871–1874 (2008)MATH
49.
go back to reference Liaw, A.; Wiener, M.; et al.: Classification and regression by randomforest. R News 2(3), 18–22 (2002) Liaw, A.; Wiener, M.; et al.: Classification and regression by randomforest. R News 2(3), 18–22 (2002)
50.
go back to reference Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; Vanderplas, J.; Passos, A.; Cournapeau, D.; Brucher, M.; Perrot, M.; Duchesnay, E.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)MathSciNetMATH Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; Vanderplas, J.; Passos, A.; Cournapeau, D.; Brucher, M.; Perrot, M.; Duchesnay, E.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)MathSciNetMATH
Metadata
Title
Back to Basics: An Interpretable Multi-Class Grade Prediction Framework
Author
Basma Alharbi
Publication date
13-09-2021
Publisher
Springer Berlin Heidelberg
Published in
Arabian Journal for Science and Engineering / Issue 2/2022
Print ISSN: 2193-567X
Electronic ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-021-06153-x

Other articles of this Issue 2/2022

Arabian Journal for Science and Engineering 2/2022 Go to the issue

Research Article-Computer Engineering and Computer Science

IARet: A Lightweight Multiscale Infrared Aerocraft Recognition Algorithm

Research Article-Computer Engineering And Computer Science

Intelligent Framework for Prediction of Heart Disease using Deep Learning

Premium Partners