Skip to main content
Top

2020 | OriginalPaper | Chapter

2. Background

Authors : Andreas Grimmer, Robert Wille

Published in: Designing Droplet Microfluidic Networks

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Microfluidics deals with the manipulation and control of small amounts of fluids and is frequently applied for Lab-on-a-Chip devices. In this chapter, the background on microfluidics including an overview of possible platforms is reviewed. Afterwards, this chapter focuses on droplet microfluidic networks, which are considered in this book. Finally, details on the hardware and software setup are provided, which has been applied for implementing and evaluating the proposed design methods.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference A.R. Abate, J.J. Agresti, D.A. Weitz, Microfluidic sorting with high-speed single-layer membrane valves. Appl. Phys. Lett. 96(20), 203509 (2010)CrossRef A.R. Abate, J.J. Agresti, D.A. Weitz, Microfluidic sorting with high-speed single-layer membrane valves. Appl. Phys. Lett. 96(20), 203509 (2010)CrossRef
2.
go back to reference E. Amstad, X. Chen, M. Eggersdorfer, N. Cohen, T.E. Kodger, C.L. Ren, D.A. Weitz, Parallelization of microfluidic flow-focusing devices. Phys. Rev. E 95(4), 043105 (2017) E. Amstad, X. Chen, M. Eggersdorfer, N. Cohen, T.E. Kodger, C.L. Ren, D.A. Weitz, Parallelization of microfluidic flow-focusing devices. Phys. Rev. E 95(4), 043105 (2017)
6.
go back to reference A. Biral, A. Zanella, Introducing purely hydrodynamic networking functionalities into microfluidic systems. Nano Commun. Netw. 4(4), 205–215 (2013)CrossRef A. Biral, A. Zanella, Introducing purely hydrodynamic networking functionalities into microfluidic systems. Nano Commun. Netw. 4(4), 205–215 (2013)CrossRef
7.
go back to reference A. Biral, D. Zordan, A. Zanella, Modeling, simulation and experimentation of droplet-based microfluidic networks. Trans. Mol. Biol. Multi-scale Commun. 1(2), 122–134 (2015)CrossRef A. Biral, D. Zordan, A. Zanella, Modeling, simulation and experimentation of droplet-based microfluidic networks. Trans. Mol. Biol. Multi-scale Commun. 1(2), 122–134 (2015)CrossRef
9.
go back to reference F. Brinkmann, M. Hirtz, A. Haller, T.M. Gorges, M.J. Vellekoop, S. Riethdorf, V. Müller, K. Pantel, H. Fuchs, A versatile microarray platform for capturing rare cells. Nat. Sci. Rep. 5, 15342 (2015)CrossRef F. Brinkmann, M. Hirtz, A. Haller, T.M. Gorges, M.J. Vellekoop, S. Riethdorf, V. Müller, K. Pantel, H. Fuchs, A versatile microarray platform for capturing rare cells. Nat. Sci. Rep. 5, 15342 (2015)CrossRef
12.
go back to reference C. Chang, J. Sustarich, R. Bharadwaj, A. Chandrasekaran, P.D. Adams, A.K. Singh, Droplet-based microfluidic platform for heterogeneous enzymatic assays. Lab Chip 13(9), 1817–1822 (2013)CrossRef C. Chang, J. Sustarich, R. Bharadwaj, A. Chandrasekaran, P.D. Adams, A.K. Singh, Droplet-based microfluidic platform for heterogeneous enzymatic assays. Lab Chip 13(9), 1817–1822 (2013)CrossRef
14.
go back to reference X. Chen, T. Glawdel, N. Cui, C.L. Ren, Model of droplet generation in flow focusing generators operating in the squeezing regime. Microfluid. Nanofluid. 18(5–6), 1341–1353 (2015)CrossRef X. Chen, T. Glawdel, N. Cui, C.L. Ren, Model of droplet generation in flow focusing generators operating in the squeezing regime. Microfluid. Nanofluid. 18(5–6), 1341–1353 (2015)CrossRef
15.
go back to reference X. Chen, A. Brukson, C.L. Ren, A simple droplet merger design for controlled reaction volumes. Microfluid. Nanofluid. 21(3), 34 (2017) X. Chen, A. Brukson, C.L. Ren, A simple droplet merger design for controlled reaction volumes. Microfluid. Nanofluid. 21(3), 34 (2017)
16.
go back to reference W.-L. Chou, P.-Y. Lee, C.-L. Yang, W.-Y. Huang, Y.-S. Lin, Recent advances in applications of droplet microfluidics. Micromach. J. Micro/Nano Sci. Dev. Appl. 6(9), 1249–1271 (2015) W.-L. Chou, P.-Y. Lee, C.-L. Yang, W.-Y. Huang, Y.-S. Lin, Recent advances in applications of droplet microfluidics. Micromach. J. Micro/Nano Sci. Dev. Appl. 6(9), 1249–1271 (2015)
17.
go back to reference K. Churski, M. Nowacki, P.M. Korczyk, P. Garstecki, Simple modular systems for generation of droplets on demand. Lab Chip 13(18), 3689–3697 (2013)CrossRef K. Churski, M. Nowacki, P.M. Korczyk, P. Garstecki, Simple modular systems for generation of droplets on demand. Lab Chip 13(18), 3689–3697 (2013)CrossRef
19.
go back to reference M. Courtney, X. Chen, S. Chan, T. Mohamed, P.P. Rao, C.L. Ren, Droplet microfluidic system with on-demand trapping and releasing of droplet for drug screening applications. Anal. Chem. 89(1), 910–915 (2016)CrossRef M. Courtney, X. Chen, S. Chan, T. Mohamed, P.P. Rao, C.L. Ren, Droplet microfluidic system with on-demand trapping and releasing of droplet for drug screening applications. Anal. Chem. 89(1), 910–915 (2016)CrossRef
20.
go back to reference G. Cristobal, J.-P. Benoit, M. Joanicot, A. Ajdari, Microfluidic bypass for efficient passive regulation of droplet traffic at a junction. Appl. Phys. Lett. 89(3), 34104–34104 (2006)CrossRef G. Cristobal, J.-P. Benoit, M. Joanicot, A. Ajdari, Microfluidic bypass for efficient passive regulation of droplet traffic at a junction. Appl. Phys. Lett. 89(3), 34104–34104 (2006)CrossRef
22.
go back to reference J. Dai, H.S. Kim, A.R. Guzman, W.-B. Shim, A. Han, A large-scale on-chip droplet incubation chamber enables equal microbial culture time. RSC Adv. 6(25), 20516–20519 (2016)CrossRef J. Dai, H.S. Kim, A.R. Guzman, W.-B. Shim, A. Han, A large-scale on-chip droplet incubation chamber enables equal microbial culture time. RSC Adv. 6(25), 20516–20519 (2016)CrossRef
25.
go back to reference L.M. de Moura, N. Bjørner, Z3: an efficient SMT solver, in Tools and Algorithms for Construction and Analysis of Systems (2008), pp. 337–340 L.M. de Moura, N. Bjørner, Z3: an efficient SMT solver, in Tools and Algorithms for Construction and Analysis of Systems (2008), pp. 337–340
32.
go back to reference M.J. Fuerstman, A. Lai, M.E. Thurlow, S.S. Shevkoplyas, H.A. Stone, G.M. Whitesides, The pressure drop along rectangular microchannels containing bubbles. Lab Chip 7(11), 1479–1489 (2007)CrossRef M.J. Fuerstman, A. Lai, M.E. Thurlow, S.S. Shevkoplyas, H.A. Stone, G.M. Whitesides, The pressure drop along rectangular microchannels containing bubbles. Lab Chip 7(11), 1479–1489 (2007)CrossRef
33.
go back to reference J.-C. Galas, D. Bartolo, V. Studer, Active connectors for microfluidic drops on demand. New J. Phys. 11(7), 075027 (2009)CrossRef J.-C. Galas, D. Bartolo, V. Studer, Active connectors for microfluidic drops on demand. New J. Phys. 11(7), 075027 (2009)CrossRef
34.
go back to reference P. Garstecki, M.J. Fuerstman, H.A. Stone, G.M. Whitesides, Formation of droplets and bubbles in a microfluidic T-junction—scaling and mechanism of break-up. Lab Chip 6(3), 437–446 (2006)CrossRef P. Garstecki, M.J. Fuerstman, H.A. Stone, G.M. Whitesides, Formation of droplets and bubbles in a microfluidic T-junction—scaling and mechanism of break-up. Lab Chip 6(3), 437–446 (2006)CrossRef
37.
go back to reference T. Glawdel, C. Elbuken, C. Ren, Passive droplet trafficking at microfluidic junctions under geometric and flow asymmetries. Lab Chip 11(22), 3774–3784 (2011)CrossRef T. Glawdel, C. Elbuken, C. Ren, Passive droplet trafficking at microfluidic junctions under geometric and flow asymmetries. Lab Chip 11(22), 3774–3784 (2011)CrossRef
38.
go back to reference T. Glawdel, C. Elbuken, C.L. Ren, Droplet formation in microfluidic T-junction generators operating in the transitional regime. I. Experimental observations. Phys. Rev. E 85(1), 016322 (2012) T. Glawdel, C. Elbuken, C.L. Ren, Droplet formation in microfluidic T-junction generators operating in the transitional regime. I. Experimental observations. Phys. Rev. E 85(1), 016322 (2012)
39.
go back to reference T. Glawdel, C. Elbuken, C.L. Ren, Droplet formation in microfluidic T-junction generators operating in the transitional regime. II. Modeling. Phys. Rev. E 85(1), 016323 (2012) T. Glawdel, C. Elbuken, C.L. Ren, Droplet formation in microfluidic T-junction generators operating in the transitional regime. II. Modeling. Phys. Rev. E 85(1), 016323 (2012)
55.
go back to reference H. Gu, M.H. Duits, F. Mugele, Droplets formation and merging in two-phase flow microfluidics. Int. J. Mol. Sci. 12(4), 2572–2597 (2011)CrossRef H. Gu, M.H. Duits, F. Mugele, Droplets formation and merging in two-phase flow microfluidics. Int. J. Mol. Sci. 12(4), 2572–2597 (2011)CrossRef
57.
go back to reference M. Hamidović, W. Haselmayr, A. Grimmer, R. Wille, Towards droplet on demand for microfluidic networks, in Workshop on Molecular Communications (2018), pp. 1–2 M. Hamidović, W. Haselmayr, A. Grimmer, R. Wille, Towards droplet on demand for microfluidic networks, in Workshop on Molecular Communications (2018), pp. 1–2
65.
go back to reference D. Huh, J.H. Bahng, Y. Ling, H.-H. Wei, O.D. Kripfgans, J.B. Fowlkes, J.B. Grotberg, S. Takayama, Gravity-driven microfluidic particle sorting device with hydrodynamic separation amplification. Anal. Chem. 79(4), 1369–1376 (2007)CrossRef D. Huh, J.H. Bahng, Y. Ling, H.-H. Wei, O.D. Kripfgans, J.B. Fowlkes, J.B. Grotberg, S. Takayama, Gravity-driven microfluidic particle sorting device with hydrodynamic separation amplification. Anal. Chem. 79(4), 1369–1376 (2007)CrossRef
68.
go back to reference T. Kaminski, P. Garstecki, Controlled droplet microfluidic systems for multistep chemical and biological assays. Chem. Soc. Rev. 46(20), 6210–6226 (2017)CrossRef T. Kaminski, P. Garstecki, Controlled droplet microfluidic systems for multistep chemical and biological assays. Chem. Soc. Rev. 46(20), 6210–6226 (2017)CrossRef
69.
go back to reference T.S. Kaminski, O. Scheler, P. Garstecki, Droplet microfluidics for microbiology: techniques, applications and challenges. Lab Chip 16(12), 2168–2187 (2016)CrossRef T.S. Kaminski, O. Scheler, P. Garstecki, Droplet microfluidics for microbiology: techniques, applications and challenges. Lab Chip 16(12), 2168–2187 (2016)CrossRef
74.
go back to reference M. Kim, Y. Huang, K. Choi, C.H. Hidrovo, The improved resistance of PDMS to pressure-induced deformation and chemical solvent swelling for microfluidic devices. Microelectron. Eng. 124, 66–75 (2014)CrossRef M. Kim, Y. Huang, K. Choi, C.H. Hidrovo, The improved resistance of PDMS to pressure-induced deformation and chemical solvent swelling for microfluidic devices. Microelectron. Eng. 124, 66–75 (2014)CrossRef
75.
go back to reference B. Kintses, L.D. van Vliet, S.R. Devenish, F. Hollfelder, Microfluidic droplets: new integrated workflows for biological experiments. Curr. Opin. Chem. Biol. 14(5), 548–555 (2010)CrossRef B. Kintses, L.D. van Vliet, S.R. Devenish, F. Hollfelder, Microfluidic droplets: new integrated workflows for biological experiments. Curr. Opin. Chem. Biol. 14(5), 548–555 (2010)CrossRef
76.
go back to reference J. Köhler, T. Henkel, A. Grodrian, T. Kirner, M. Roth, K. Martin, J. Metze, Digital reaction technology by micro segmented flow-components, concepts and applications. Chem. Eng. J. 101(1), 201–216 (2004)CrossRef J. Köhler, T. Henkel, A. Grodrian, T. Kirner, M. Roth, K. Martin, J. Metze, Digital reaction technology by micro segmented flow-components, concepts and applications. Chem. Eng. J. 101(1), 201–216 (2004)CrossRef
77.
go back to reference T.P. Lagus, J.F. Edd, High-throughput co-encapsulation of self-ordered cell trains: cell pair interactions in microdroplets. RSC Adv. 3(43), 20512–20522 (2013)CrossRef T.P. Lagus, J.F. Edd, High-throughput co-encapsulation of self-ordered cell trains: cell pair interactions in microdroplets. RSC Adv. 3(43), 20512–20522 (2013)CrossRef
81.
go back to reference D. Link, S.L. Anna, D. Weitz, H. Stone, Geometrically mediated breakup of drops in microfluidic devices. Phys. Rev. Lett. 92(5), 054503 (2004) D. Link, S.L. Anna, D. Weitz, H. Stone, Geometrically mediated breakup of drops in microfluidic devices. Phys. Rev. Lett. 92(5), 054503 (2004)
83.
go back to reference F. Malloggi, S.A. Vanapalli, H. Gu, D. van den Ende, F. Mugele, Electrowetting-controlled droplet generation in a microfluidic flow-focusing device. J. Phys. Condens. Matter 19(46), 462101 (2007) F. Malloggi, S.A. Vanapalli, H. Gu, D. van den Ende, F. Mugele, Electrowetting-controlled droplet generation in a microfluidic flow-focusing device. J. Phys. Condens. Matter 19(46), 462101 (2007)
84.
go back to reference F. Malloggi, H. Gu, A. Banpurkar, S. Vanapalli, F. Mugele, Electrowetting–a versatile tool for controlling microdrop generation. Eur. Phys. J. E 26(1–2), 91–96 (2008)CrossRef F. Malloggi, H. Gu, A. Banpurkar, S. Vanapalli, F. Mugele, Electrowetting–a versatile tool for controlling microdrop generation. Eur. Phys. J. E 26(1–2), 91–96 (2008)CrossRef
85.
go back to reference D. Mark, S. Haeberle, G. Roth, F. von Stetten, R. Zengerle, Microfluidic Lab-on-a-Chip platforms: requirements, characteristics and applications. Chem. Soc. Rev. 39(3), 1153–1182 (2010)CrossRef D. Mark, S. Haeberle, G. Roth, F. von Stetten, R. Zengerle, Microfluidic Lab-on-a-Chip platforms: requirements, characteristics and applications. Chem. Soc. Rev. 39(3), 1153–1182 (2010)CrossRef
92.
go back to reference T.H. Nguyen, X. Chen, A. Sedighi, U.J. Krull, C.L. Ren, A droplet-based microfluidic platform for rapid immobilization of quantum dots on individual magnetic microbeads. Microfluid. Nanofluid. 22(6), 63 (2018) T.H. Nguyen, X. Chen, A. Sedighi, U.J. Krull, C.L. Ren, A droplet-based microfluidic platform for rapid immobilization of quantum dots on individual magnetic microbeads. Microfluid. Nanofluid. 22(6), 63 (2018)
93.
go back to reference K.W. Oh, K. Lee, B. Ahn, E.P. Furlani, Design of pressure-driven microfluidic networks using electric circuit analogy. Lab Chip 12(3), 515–545 (2012)CrossRef K.W. Oh, K. Lee, B. Ahn, E.P. Furlani, Design of pressure-driven microfluidic networks using electric circuit analogy. Lab Chip 12(3), 515–545 (2012)CrossRef
98.
go back to reference M. Prakash, N. Gershenfeld, Microfluidic bubble logic. Science 315(5813), 832–835 (2007)CrossRef M. Prakash, N. Gershenfeld, Microfluidic bubble logic. Science 315(5813), 832–835 (2007)CrossRef
100.
go back to reference E.K. Sackmann, A.L. Fulton, D.J. Beebe, The present and future role of microfluidics in biomedical research. Nature 507(7491), 181 (2014)CrossRef E.K. Sackmann, A.L. Fulton, D.J. Beebe, The present and future role of microfluidics in biomedical research. Nature 507(7491), 181 (2014)CrossRef
104.
go back to reference R. Seemann, M. Brinkmann, T. Pfohl, S. Herminghaus, Droplet based microfluidics. Rep. Prog. Phys. 75(1), 016601 (2011)CrossRef R. Seemann, M. Brinkmann, T. Pfohl, S. Herminghaus, Droplet based microfluidics. Rep. Prog. Phys. 75(1), 016601 (2011)CrossRef
107.
go back to reference L. Shang, Y. Cheng, Y. Zhao, Emerging droplet microfluidics. Chem. Rev. 117(12), 7964–8040 (2017)CrossRef L. Shang, Y. Cheng, Y. Zhao, Emerging droplet microfluidics. Chem. Rev. 117(12), 7964–8040 (2017)CrossRef
114.
go back to reference Y.-C. Tan, J.S. Fisher, A.I. Lee, V. Cristini, A.P. Lee, Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting. Lab Chip 4(4), 292–298 (2004)CrossRef Y.-C. Tan, J.S. Fisher, A.I. Lee, V. Cristini, A.P. Lee, Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting. Lab Chip 4(4), 292–298 (2004)CrossRef
115.
go back to reference Y.-C. Tan, Y.L. Ho, A.P. Lee, Droplet coalescence by geometrically mediated flow in microfluidic channels. Microfluid. Nanofluid. 3(4), 495–499 (2007)CrossRef Y.-C. Tan, Y.L. Ho, A.P. Lee, Droplet coalescence by geometrically mediated flow in microfluidic channels. Microfluid. Nanofluid. 3(4), 495–499 (2007)CrossRef
116.
go back to reference Y.-C. Tan, Y.L. Ho, A. Lee, Microfluidic sorting of droplets by size. Microfluid. Nanofluid. 4(4), 343–348 (2008)CrossRef Y.-C. Tan, Y.L. Ho, A. Lee, Microfluidic sorting of droplets by size. Microfluid. Nanofluid. 4(4), 343–348 (2008)CrossRef
117.
go back to reference S.-Y. Teh, R. Lin, L.-H. Hung, A.P. Lee, Droplet microfluidics. Lab Chip 8, 198–220 (2008)CrossRef S.-Y. Teh, R. Lin, L.-H. Hung, A.P. Lee, Droplet microfluidics. Lab Chip 8, 198–220 (2008)CrossRef
118.
go back to reference A.J. Teo, K.-H.H. Li, N.-T. Nguyen, W. Guo, N. Heere, H.-D. Xi, C.-W. Tsao, W. Li, S.H. Tan, Negative pressure induced droplet generation in a microfluidic flow-focusing device. Anal. Chem. 89(8), 4387–4391 (2017)CrossRef A.J. Teo, K.-H.H. Li, N.-T. Nguyen, W. Guo, N. Heere, H.-D. Xi, C.-W. Tsao, W. Li, S.H. Tan, Negative pressure induced droplet generation in a microfluidic flow-focusing device. Anal. Chem. 89(8), 4387–4391 (2017)CrossRef
119.
go back to reference R. Thakur, Y. Zhang, A. Amin, S. Wereley, Programmable microfluidic platform for spatiotemporal control over nanoliter droplets. Microfluid. Nanofluid. 18(5–6), 1425–1431 (2015)CrossRef R. Thakur, Y. Zhang, A. Amin, S. Wereley, Programmable microfluidic platform for spatiotemporal control over nanoliter droplets. Microfluid. Nanofluid. 18(5–6), 1425–1431 (2015)CrossRef
120.
go back to reference T. Thorsen, R.W. Roberts, F.H. Arnold, S.R. Quake, Dynamic pattern formation in a vesicle-generating microfluidic device. Phys. Rev. Lett. 86(18), 4163 (2001)CrossRef T. Thorsen, R.W. Roberts, F.H. Arnold, S.R. Quake, Dynamic pattern formation in a vesicle-generating microfluidic device. Phys. Rev. Lett. 86(18), 4163 (2001)CrossRef
122.
go back to reference S.A. Vanapalli, A.G. Banpurkar, D. van den Ende, M.H. Duits, F. Mugele, Hydrodynamic resistance of single confined moving drops in rectangular microchannels. Lab Chip 9(7), 982–990 (2009)CrossRef S.A. Vanapalli, A.G. Banpurkar, D. van den Ende, M.H. Duits, F. Mugele, Hydrodynamic resistance of single confined moving drops in rectangular microchannels. Lab Chip 9(7), 982–990 (2009)CrossRef
124.
go back to reference W. Wang, C. Yang, C.M. Li, On-demand microfluidic droplet trapping and fusion for on-chip static droplet assays. Lab Chip 9(11), 1504–1506 (2009)CrossRef W. Wang, C. Yang, C.M. Li, On-demand microfluidic droplet trapping and fusion for on-chip static droplet assays. Lab Chip 9(11), 1504–1506 (2009)CrossRef
126.
go back to reference G.M. Whitesides, The origins and the future of microfluidics. Nature 442(7101), 368–373 (2006)CrossRef G.M. Whitesides, The origins and the future of microfluidics. Nature 442(7101), 368–373 (2006)CrossRef
130.
go back to reference S. Zeng, B. Li, X. Su, J. Qin, B. Lin, Microvalve-actuated precise control of individual droplets in microfluidic devices. Lab Chip 9(10), 1340–1343 (2009)CrossRef S. Zeng, B. Li, X. Su, J. Qin, B. Lin, Microvalve-actuated precise control of individual droplets in microfluidic devices. Lab Chip 9(10), 1340–1343 (2009)CrossRef
Metadata
Title
Background
Authors
Andreas Grimmer
Robert Wille
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-20713-7_2