Skip to main content
Top
Published in:
Cover of the book

2020 | OriginalPaper | Chapter

1. Introduction

Authors : Andreas Grimmer, Robert Wille

Published in: Designing Droplet Microfluidic Networks

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter provides an introduction into microfluidics in general and droplet microfluidic networks in particular. It briefly reviews the state-of-the-art design process for such devices and discusses the contributions made in this book to improve it. By this, the chapter gives an overview of the book and its contributions.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
 
3
A bypass channel [20] connects the endpoints of the two successor channels. This bypass cannot be entered by any droplet and is used to make the droplet routing only dependent on the resistances of the successors.
 
4
Note that simulation as proposed in Chap. 3 often also provides the basis for other contributions (cf. Chap. 4 or 8) and, hence, is covered right after the Background in Chap. 3.
 
Literature
6.
go back to reference A. Biral, A. Zanella, Introducing purely hydrodynamic networking functionalities into microfluidic systems. Nano Commun. Netw. 4(4), 205–215 (2013)CrossRef A. Biral, A. Zanella, Introducing purely hydrodynamic networking functionalities into microfluidic systems. Nano Commun. Netw. 4(4), 205–215 (2013)CrossRef
13.
go back to reference X. Chen, C.L. Ren, A microfluidic chip integrated with droplet generation, pairing, trapping, merging, mixing and releasing. RSC Adv. 7(27), 16738–16750 (2017)CrossRef X. Chen, C.L. Ren, A microfluidic chip integrated with droplet generation, pairing, trapping, merging, mixing and releasing. RSC Adv. 7(27), 16738–16750 (2017)CrossRef
20.
go back to reference G. Cristobal, J.-P. Benoit, M. Joanicot, A. Ajdari, Microfluidic bypass for efficient passive regulation of droplet traffic at a junction. Appl. Phys. Lett. 89(3), 34104–34104 (2006)CrossRef G. Cristobal, J.-P. Benoit, M. Joanicot, A. Ajdari, Microfluidic bypass for efficient passive regulation of droplet traffic at a junction. Appl. Phys. Lett. 89(3), 34104–34104 (2006)CrossRef
32.
go back to reference M.J. Fuerstman, A. Lai, M.E. Thurlow, S.S. Shevkoplyas, H.A. Stone, G.M. Whitesides, The pressure drop along rectangular microchannels containing bubbles. Lab Chip 7(11), 1479–1489 (2007)CrossRef M.J. Fuerstman, A. Lai, M.E. Thurlow, S.S. Shevkoplyas, H.A. Stone, G.M. Whitesides, The pressure drop along rectangular microchannels containing bubbles. Lab Chip 7(11), 1479–1489 (2007)CrossRef
35.
go back to reference T. Glatzel, C. Litterst, C. Cupelli, T. Lindemann, C. Moosmann, R. Niekrawietz, W. Streule, R. Zengerle, P. Koltay, Computational fluid dynamics (CFD) software tools for microfluidic applications–a case study. Comput. Fluids 37(3), 218–235 (2008)MATHCrossRef T. Glatzel, C. Litterst, C. Cupelli, T. Lindemann, C. Moosmann, R. Niekrawietz, W. Streule, R. Zengerle, P. Koltay, Computational fluid dynamics (CFD) software tools for microfluidic applications–a case study. Comput. Fluids 37(3), 218–235 (2008)MATHCrossRef
36.
go back to reference T. Glawdel, C.L. Ren, Global network design for robust operation of microfluidic droplet generators with pressure-driven flow. Microfluid. Nanofluid. 13(3), 469–480 (2012)CrossRef T. Glawdel, C.L. Ren, Global network design for robust operation of microfluidic droplet generators with pressure-driven flow. Microfluid. Nanofluid. 13(3), 469–480 (2012)CrossRef
37.
go back to reference T. Glawdel, C. Elbuken, C. Ren, Passive droplet trafficking at microfluidic junctions under geometric and flow asymmetries. Lab Chip 11(22), 3774–3784 (2011)CrossRef T. Glawdel, C. Elbuken, C. Ren, Passive droplet trafficking at microfluidic junctions under geometric and flow asymmetries. Lab Chip 11(22), 3774–3784 (2011)CrossRef
43.
go back to reference A. Grimmer, W. Haselmayr, A. Springer, R. Wille, A discrete model for Networked Labs-on-Chips: linking the physical world to design automation, in Design Automation Conference (2017), pp. 50:1–50:6 A. Grimmer, W. Haselmayr, A. Springer, R. Wille, A discrete model for Networked Labs-on-Chips: linking the physical world to design automation, in Design Automation Conference (2017), pp. 50:1–50:6
44.
go back to reference A. Grimmer, W. Haselmayr, A. Springer, R. Wille, Verification of Networked Labs-on-Chip architectures, in Design, Automation and Test in Europe (2017), pp. 1679–1684 A. Grimmer, W. Haselmayr, A. Springer, R. Wille, Verification of Networked Labs-on-Chip architectures, in Design, Automation and Test in Europe (2017), pp. 1679–1684
45.
go back to reference A. Grimmer, Q. Wang, H. Yao, T.-Y. Ho, R. Wille, Close-to-optimal placement and routing for continuous-flow microfluidic biochips, in Asia and South Pacific Design Automation Conference (2017), pp. 530–535 A. Grimmer, Q. Wang, H. Yao, T.-Y. Ho, R. Wille, Close-to-optimal placement and routing for continuous-flow microfluidic biochips, in Asia and South Pacific Design Automation Conference (2017), pp. 530–535
46.
go back to reference A. Grimmer, X. Chen, M. Hamidović, W. Haselmayr, C.L. Ren, R. Wille, Simulation before fabrication: a case study on the utilization of simulators for the design of droplet microfluidic networks. RSC Adv. 8, 34733–34742 (2018)CrossRef A. Grimmer, X. Chen, M. Hamidović, W. Haselmayr, C.L. Ren, R. Wille, Simulation before fabrication: a case study on the utilization of simulators for the design of droplet microfluidic networks. RSC Adv. 8, 34733–34742 (2018)CrossRef
47.
go back to reference A. Grimmer, P. Frank, P. Ebner, S. Häfner, A. Richter, R. Wille, Meander designer: automatically generating meander channel designs. Micromach. J. Micro/Nano Sci. Dev. Appl. 9(12), 625 (2018)CrossRef A. Grimmer, P. Frank, P. Ebner, S. Häfner, A. Richter, R. Wille, Meander designer: automatically generating meander channel designs. Micromach. J. Micro/Nano Sci. Dev. Appl. 9(12), 625 (2018)CrossRef
48.
go back to reference A. Grimmer, W. Haselmayr, A. Springer, R. Wille, Design of application-specific architectures for Networked Labs-on-Chips. Trans. Comput. Aided Des. Integr. Circuits Syst. 37(1), 193–202 (2018)CrossRef A. Grimmer, W. Haselmayr, A. Springer, R. Wille, Design of application-specific architectures for Networked Labs-on-Chips. Trans. Comput. Aided Des. Integr. Circuits Syst. 37(1), 193–202 (2018)CrossRef
53.
go back to reference D.T. Grissom, P. Brisk, Fast online synthesis of digital microfluidic biochips. Trans. Comput. Aided Des. Integr. Circuits Syst. 33(3), 356–369 (2014)CrossRef D.T. Grissom, P. Brisk, Fast online synthesis of digital microfluidic biochips. Trans. Comput. Aided Des. Integr. Circuits Syst. 33(3), 356–369 (2014)CrossRef
54.
go back to reference D. Grissom, K. O’Neal, B. Preciado, H. Patel, R. Doherty, N. Liao, P. Brisk, A digital microfluidic biochip synthesis framework, in International Conference on Very Large Scale Integration of System-on-Chip (2012), pp. 177–182 D. Grissom, K. O’Neal, B. Preciado, H. Patel, R. Doherty, N. Liao, P. Brisk, A digital microfluidic biochip synthesis framework, in International Conference on Very Large Scale Integration of System-on-Chip (2012), pp. 177–182
55.
go back to reference H. Gu, M.H. Duits, F. Mugele, Droplets formation and merging in two-phase flow microfluidics. Int. J. Mol. Sci. 12(4), 2572–2597 (2011)CrossRef H. Gu, M.H. Duits, F. Mugele, Droplets formation and merging in two-phase flow microfluidics. Int. J. Mol. Sci. 12(4), 2572–2597 (2011)CrossRef
56.
go back to reference S. Haeberle, R. Zengerle, Microfluidic platforms for Lab-on-a-Chip applications. Lab Chip 7, 1094–1110 (2007)CrossRef S. Haeberle, R. Zengerle, Microfluidic platforms for Lab-on-a-Chip applications. Lab Chip 7, 1094–1110 (2007)CrossRef
62.
go back to reference Y.-L. Hsieh, T.-Y. Ho, K. Chakrabarty, Biochip synthesis and dynamic error recovery for sample preparation using digital microfluidics. Trans. Comput. Aided Des. Integr. Circuits Syst. 33(2), 183–196 (2014)CrossRef Y.-L. Hsieh, T.-Y. Ho, K. Chakrabarty, Biochip synthesis and dynamic error recovery for sample preparation using digital microfluidics. Trans. Comput. Aided Des. Integr. Circuits Syst. 33(2), 183–196 (2014)CrossRef
63.
go back to reference K. Hu, F. Yu, T.-Y. Ho, K. Chakrabarty, Testing of flow-based microfluidic biochips: fault modeling, test generation, and experimental demonstration. Trans. Comput. Aided Des. Integr. Circuits Syst. 33(10), 1463–1475 (2014)CrossRef K. Hu, F. Yu, T.-Y. Ho, K. Chakrabarty, Testing of flow-based microfluidic biochips: fault modeling, test generation, and experimental demonstration. Trans. Comput. Aided Des. Integr. Circuits Syst. 33(10), 1463–1475 (2014)CrossRef
64.
go back to reference W.-L. Huang, A. Gupta, S. Roy, T.-Y. Ho, P. Pop, Fast architecture-level synthesis of fault-tolerant flow-based microfluidic biochips, in Design, Automation and Test in Europe (2017), pp. 1671–1676 W.-L. Huang, A. Gupta, S. Roy, T.-Y. Ho, P. Pop, Fast architecture-level synthesis of fault-tolerant flow-based microfluidic biochips, in Design, Automation and Test in Europe (2017), pp. 1671–1676
71.
go back to reference O. Keszocze, R. Wille, T.-Y. Ho, R. Drechsler, Exact one-pass synthesis of digital microfluidic biochips, in Design Automation Conference (2014), pp. 1–6 O. Keszocze, R. Wille, T.-Y. Ho, R. Drechsler, Exact one-pass synthesis of digital microfluidic biochips, in Design Automation Conference (2014), pp. 1–6
73.
go back to reference O. Keszocze, Z. Li, A. Grimmer, R. Wille, K. Chakrabarty, R. Drechsler, Exact routing for micro-electrode-dot-array digital microfluidic biochips, in Asia and South Pacific Design Automation Conference (2017) O. Keszocze, Z. Li, A. Grimmer, R. Wille, K. Chakrabarty, R. Drechsler, Exact routing for micro-electrode-dot-array digital microfluidic biochips, in Asia and South Pacific Design Automation Conference (2017)
82.
go back to reference E. Maftei, P. Pop, J. Madsen, Tabu search-based synthesis of digital microfluidic biochips with dynamically reconfigurable non-rectangular devices. J. Des. Autom. Embed. Syst. 14(3), 287–307 (2010)CrossRef E. Maftei, P. Pop, J. Madsen, Tabu search-based synthesis of digital microfluidic biochips with dynamically reconfigurable non-rectangular devices. J. Des. Autom. Embed. Syst. 14(3), 287–307 (2010)CrossRef
86.
go back to reference J. McDaniel, B. Crites, P. Brisk, W.H. Grover, Flow-layer physical design for microchips based on monolithic membrane valves. J. Des. Test 32(6), 51–59 (2015) J. McDaniel, B. Crites, P. Brisk, W.H. Grover, Flow-layer physical design for microchips based on monolithic membrane valves. J. Des. Test 32(6), 51–59 (2015)
87.
go back to reference W.H. Minhass, P. Pop, J. Madsen, System-level modeling and synthesis of flow-based microfluidic biochips, in International Conference on Compilers, Architecture and Synthesis for Embedded Systems (2011), pp. 225–233 W.H. Minhass, P. Pop, J. Madsen, System-level modeling and synthesis of flow-based microfluidic biochips, in International Conference on Compilers, Architecture and Synthesis for Embedded Systems (2011), pp. 225–233
88.
go back to reference W.H. Minhass, P. Pop, J. Madsen, F.S. Blaga, Architectural synthesis of flow-based microfluidic large-scale integration biochips, in International Conference on Compilers, Architecture and Synthesis for Embedded Systems (2012), pp. 181–190 W.H. Minhass, P. Pop, J. Madsen, F.S. Blaga, Architectural synthesis of flow-based microfluidic large-scale integration biochips, in International Conference on Compilers, Architecture and Synthesis for Embedded Systems (2012), pp. 181–190
89.
go back to reference D. Mitra, S. Roy, S. Bhattacharjee, K. Chakrabarty, B.B. Bhattacharya, On-chip sample preparation for multiple targets using digital microfluidics. Trans. Comput. Aided Des. Integr. Circuits Syst. 33(8), 1131–1144 (2014)CrossRef D. Mitra, S. Roy, S. Bhattacharjee, K. Chakrabarty, B.B. Bhattacharya, On-chip sample preparation for multiple targets using digital microfluidics. Trans. Comput. Aided Des. Integr. Circuits Syst. 33(8), 1131–1144 (2014)CrossRef
91.
go back to reference G.E. Moore, Cramming more components onto integrated circuits. Electronics 38(8), 114–117 (1965) G.E. Moore, Cramming more components onto integrated circuits. Electronics 38(8), 114–117 (1965)
93.
go back to reference K.W. Oh, K. Lee, B. Ahn, E.P. Furlani, Design of pressure-driven microfluidic networks using electric circuit analogy. Lab Chip 12(3), 515–545 (2012)CrossRef K.W. Oh, K. Lee, B. Ahn, E.P. Furlani, Design of pressure-driven microfluidic networks using electric circuit analogy. Lab Chip 12(3), 515–545 (2012)CrossRef
95.
go back to reference S. Poddar, S. Ghoshal, K. Chakrabarty, B.B. Bhattacharya, Error-correcting sample preparation with cyberphysical digital microfluidic Lab-on-Chip. Trans. Des. Autom. Electron. Syst. 22(1), 2 (2016)CrossRef S. Poddar, S. Ghoshal, K. Chakrabarty, B.B. Bhattacharya, Error-correcting sample preparation with cyberphysical digital microfluidic Lab-on-Chip. Trans. Des. Autom. Electron. Syst. 22(1), 2 (2016)CrossRef
96.
go back to reference M.G. Pollack, A.D. Shenderov, R.B. Fair, Electrowetting-based actuation of droplets for integrated microfluidics. Lab Chip 2(2), 96–101 (2002)CrossRef M.G. Pollack, A.D. Shenderov, R.B. Fair, Electrowetting-based actuation of droplets for integrated microfluidics. Lab Chip 2(2), 96–101 (2002)CrossRef
97.
go back to reference P. Pop, I.E. Araci, K. Chakrabarty, Continuous-flow biochips: technology, physical-design methods, and testing. J. Des. Test 32(6), 8–19 (2015) P. Pop, I.E. Araci, K. Chakrabarty, Continuous-flow biochips: technology, physical-design methods, and testing. J. Des. Test 32(6), 8–19 (2015)
99.
go back to reference S. Roy, B.B. Bhattacharya, S. Ghoshal, K. Chakrabarty, High-throughput dilution engine for sample preparation on digital microfluidic biochips. IET Comput. Digit. Tech. 8(4), 163–171 (2014)CrossRef S. Roy, B.B. Bhattacharya, S. Ghoshal, K. Chakrabarty, High-throughput dilution engine for sample preparation on digital microfluidic biochips. IET Comput. Digit. Tech. 8(4), 163–171 (2014)CrossRef
101.
go back to reference M. Schindler, A. Ajdari, Droplet traffic in microfluidic networks: a simple model for understanding and designing. Phys. Rev. Lett. 100(4), 044501 (2008) M. Schindler, A. Ajdari, Droplet traffic in microfluidic networks: a simple model for understanding and designing. Phys. Rev. Lett. 100(4), 044501 (2008)
103.
go back to reference M.F. Schmidt, W.H. Minhass, P. Pop, J. Madsen, Modeling and simulation framework for flow-based microfluidic biochips, in Symposium on Design, Test, Integration & Packaging of MEMS/MOEMS (2013), pp. 1–6 M.F. Schmidt, W.H. Minhass, P. Pop, J. Madsen, Modeling and simulation framework for flow-based microfluidic biochips, in Symposium on Design, Test, Integration & Packaging of MEMS/MOEMS (2013), pp. 1–6
111.
go back to reference F. Su, K. Chakrabarty, High-level synthesis of digital microfluidic biochips. J. Emerg. Technol. Comput. Syst. 3(4), 1 (2008)CrossRef F. Su, K. Chakrabarty, High-level synthesis of digital microfluidic biochips. J. Emerg. Technol. Comput. Syst. 3(4), 1 (2008)CrossRef
112.
go back to reference F. Su, S. Ozev, K. Chakrabarty, Testing of droplet-based microelectrofluidic systems, in International Test Conference, vol. 46 (2003), pp. 1192–1200 F. Su, S. Ozev, K. Chakrabarty, Testing of droplet-based microelectrofluidic systems, in International Test Conference, vol. 46 (2003), pp. 1192–1200
113.
go back to reference F. Su, W. Hwang, K. Chakrabarty, Droplet routing in the synthesis of digital microfluidic biochips, in Design, Automation and Test in Europe, vol. 1 (2006), pp. 1–6 F. Su, W. Hwang, K. Chakrabarty, Droplet routing in the synthesis of digital microfluidic biochips, in Design, Automation and Test in Europe, vol. 1 (2006), pp. 1–6
117.
go back to reference S.-Y. Teh, R. Lin, L.-H. Hung, A.P. Lee, Droplet microfluidics. Lab Chip 8, 198–220 (2008)CrossRef S.-Y. Teh, R. Lin, L.-H. Hung, A.P. Lee, Droplet microfluidics. Lab Chip 8, 198–220 (2008)CrossRef
121.
go back to reference K.-H. Tseng, S.-C. You, J.-Y. Liou, T.-Y. Ho, A top-down synthesis methodology for flow-based microfluidic biochips considering valve-switching minimization, in International Symposium on Physical Design (2013), pp. 123–129 K.-H. Tseng, S.-C. You, J.-Y. Liou, T.-Y. Ho, A top-down synthesis methodology for flow-based microfluidic biochips considering valve-switching minimization, in International Symposium on Physical Design (2013), pp. 123–129
122.
go back to reference S.A. Vanapalli, A.G. Banpurkar, D. van den Ende, M.H. Duits, F. Mugele, Hydrodynamic resistance of single confined moving drops in rectangular microchannels. Lab Chip 9(7), 982–990 (2009)CrossRef S.A. Vanapalli, A.G. Banpurkar, D. van den Ende, M.H. Duits, F. Mugele, Hydrodynamic resistance of single confined moving drops in rectangular microchannels. Lab Chip 9(7), 982–990 (2009)CrossRef
126.
go back to reference G.M. Whitesides, The origins and the future of microfluidics. Nature 442(7101), 368–373 (2006)CrossRef G.M. Whitesides, The origins and the future of microfluidics. Nature 442(7101), 368–373 (2006)CrossRef
127.
go back to reference R. Wille, O. Keszocze, R. Drechsler, T. Boehnisch, A. Kroker, Scalable one-pass synthesis for digital microfluidic biochips. J. Des. Test 32(6), 41–50 (2015) R. Wille, O. Keszocze, R. Drechsler, T. Boehnisch, A. Kroker, Scalable one-pass synthesis for digital microfluidic biochips. J. Des. Test 32(6), 41–50 (2015)
128.
go back to reference M. Wörner, Numerical modeling of multiphase flows in microfluidics and micro process engineering: a review of methods and applications. Microfluid. Nanofluid. 12(6), 841–886 (2012)CrossRef M. Wörner, Numerical modeling of multiphase flows in microfluidics and micro process engineering: a review of methods and applications. Microfluid. Nanofluid. 12(6), 841–886 (2012)CrossRef
129.
go back to reference T. Xu, K. Chakrabarty, Integrated droplet routing in the synthesis of microfluidic biochips, in Design Automation Conference (2007), pp. 948–953 T. Xu, K. Chakrabarty, Integrated droplet routing in the synthesis of microfluidic biochips, in Design Automation Conference (2007), pp. 948–953
131.
go back to reference Y. Zhao, K. Chakrabarty, Design and Testing of Digital Microfluidic Biochips (Springer, New York, 2012) Y. Zhao, K. Chakrabarty, Design and Testing of Digital Microfluidic Biochips (Springer, New York, 2012)
Metadata
Title
Introduction
Authors
Andreas Grimmer
Robert Wille
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-20713-7_1