Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 11/2022

09-06-2021

Bandgap engineering and plasmonically enhanced sun light photocatalyis in Au/Cd1−xZnxS nanocomposites

Authors: Pavan. P. Gotipamul, Karthik Dilly Rajan, Shweta Khanna, Maheswaran Rathinam, Siva Chidambaram

Published in: Journal of Materials Science: Materials in Electronics | Issue 11/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Metal nanoparticles-decorated semiconductor nanomaterials generally hold a series of advantages especially enhanced electron–hole pair lifetime and thus exhibit superior solar energy conversions. In this study, we report a facile solution processing of Au-decorated Cd1−xZnxS, where x = 0, 0.25, 0.5, 0.75, and 1, nanocomposites and their enhanced photocatalytic activity against methylene blue (MB) dye degradations. The Au/CdZnS nanocomposites were investigated for their structural, morphological, optical, and photocatalytic properties. The XRD patterns indicated that the crystalline sizes of CdZnS are found to fall within 1–3 nm. The electron microscopic images publicized that the average particle size of Cd0.25Zn0.75S is 5 nm. The bandgap values of pristine CdS, pristine ZnS, Cd0.75Zn0.25S, Cd0.5Zn0.5S, and Cd0.25Zn0.75S are 2.21 eV, 3.4 eV, 2.29 eV, 2.31 eV, and 2.53 eV, respectively. The optical band gap of the Cd1−xZnxS nanomaterials have got reduced for Au incorporation due to the occurrence of red shift and the enhanced visible region absorption for the incorporation of Au. The visible light photocatalytic effect of the nanocomposites has been evaluated with MB dye degradation reaction under sunlight light exposure. The Au-decorated Cd0.25Zn0.75S nanocompound had exhibited 97% of photocatalytic degradation of MB dye molecules which is 20% higher than the bare Cd0.25Zn0.75S nanocompound.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference L. Wang, Z. Liu, J. Han, R. Li, M. Huang, Stepwise synthesis of Au@CdS-CdS nanoflowers and their enhanced photocatalytic properties. J. Nanoscale Res. Lett. 14, 1–9 (2019)CrossRef L. Wang, Z. Liu, J. Han, R. Li, M. Huang, Stepwise synthesis of Au@CdS-CdS nanoflowers and their enhanced photocatalytic properties. J. Nanoscale Res. Lett. 14, 1–9 (2019)CrossRef
2.
go back to reference W. He, H. Wu, W. Wamer, H.K. Kim, J. Zheng, H. Jia, J.J. Yin, Unraveling the enhanced photocatalytic activity and phototoxicity of ZnO/metal hybrid nanostructures from generation of reactive oxygen species and charge carriers. ACS Appl. Mater. Interfaces 6, 15527–15535 (2014)CrossRef W. He, H. Wu, W. Wamer, H.K. Kim, J. Zheng, H. Jia, J.J. Yin, Unraveling the enhanced photocatalytic activity and phototoxicity of ZnO/metal hybrid nanostructures from generation of reactive oxygen species and charge carriers. ACS Appl. Mater. Interfaces 6, 15527–15535 (2014)CrossRef
3.
go back to reference C. Wanga, A. Yanhui, P. Wang, S. Zhang, J. Qian, J. Hou, A simple method for large-scale preparation of ZnS nanoribbon film and its photocatalytic activity for dye degradation. Appl. Surf. Sci. 256, 4125–4128 (2010)CrossRef C. Wanga, A. Yanhui, P. Wang, S. Zhang, J. Qian, J. Hou, A simple method for large-scale preparation of ZnS nanoribbon film and its photocatalytic activity for dye degradation. Appl. Surf. Sci. 256, 4125–4128 (2010)CrossRef
4.
go back to reference N. Li, B. Zhou, P. Guo, J. Zhou, D. Jing, Fabrication of noble metal-free Cd0.5Zn0.5S/NiS hybrid photocatalyst for efficient solar hydrogen evolution. Int. J. Hydrogen Energy 38, 11268–11277 (2013)CrossRef N. Li, B. Zhou, P. Guo, J. Zhou, D. Jing, Fabrication of noble metal-free Cd0.5Zn0.5S/NiS hybrid photocatalyst for efficient solar hydrogen evolution. Int. J. Hydrogen Energy 38, 11268–11277 (2013)CrossRef
5.
go back to reference M. Humayun, Q. Fu, Z. Zheng, H. Li, W. Luo, Improved visible-light catalytic activities of novel Au/P-doped g-C3N4 photocatalyst for solar fuel production and mechanism. Appl. Catal. A Gen. 568, 139–147 (2018)CrossRef M. Humayun, Q. Fu, Z. Zheng, H. Li, W. Luo, Improved visible-light catalytic activities of novel Au/P-doped g-C3N4 photocatalyst for solar fuel production and mechanism. Appl. Catal. A Gen. 568, 139–147 (2018)CrossRef
6.
go back to reference E.A. Kozlovaa, Yu. Kurenkovaa, P.A. Kolinkoa, A. Saraeva, EYu. Gerasimova, D.V. Kozlova, Photocatalytic hydrogen production using Me/Cd0.3Zn0.7S (Me = Au, Pt, Pd) catalysts: transformation of the metallic catalyst under the action of the reaction medium. Kinet. Catal. 86, 431–440 (2017)CrossRef E.A. Kozlovaa, Yu. Kurenkovaa, P.A. Kolinkoa, A. Saraeva, EYu. Gerasimova, D.V. Kozlova, Photocatalytic hydrogen production using Me/Cd0.3Zn0.7S (Me = Au, Pt, Pd) catalysts: transformation of the metallic catalyst under the action of the reaction medium. Kinet. Catal. 86, 431–440 (2017)CrossRef
7.
go back to reference L. Yang, M. Zhang, M. Liu, Y. Fan, H. Ben, L. Li, S. Chen, Ultrasonication-assisted synthesis of ZnxCd1−xS for enhanced visible-light photocatalytic activity. Catalysts 10, 276 (2020)CrossRef L. Yang, M. Zhang, M. Liu, Y. Fan, H. Ben, L. Li, S. Chen, Ultrasonication-assisted synthesis of ZnxCd1xS for enhanced visible-light photocatalytic activity. Catalysts 10, 276 (2020)CrossRef
8.
go back to reference Q. Deng, T. Miao, Z. Wang, Y. Xu, X. Fu, Compositional regulation and modification of the host CdS for efficient photocatalytic hydrogen production: case study on MoS2 decorated Co0.2Cd0.8S nanorods. Chem. Eng. J. 378, 122139 (2019)CrossRef Q. Deng, T. Miao, Z. Wang, Y. Xu, X. Fu, Compositional regulation and modification of the host CdS for efficient photocatalytic hydrogen production: case study on MoS2 decorated Co0.2Cd0.8S nanorods. Chem. Eng. J. 378, 122139 (2019)CrossRef
9.
go back to reference C. Xing, W. Zhang, Y. Yan, L. Guo, Band structure-controlled solid solution of Cd1−xZnxS photocatalyst for hydrogen production by water splitting. Int. J. Hydrogen Energy 31, 2018–2024 (2006)CrossRef C. Xing, W. Zhang, Y. Yan, L. Guo, Band structure-controlled solid solution of Cd1−xZnxS photocatalyst for hydrogen production by water splitting. Int. J. Hydrogen Energy 31, 2018–2024 (2006)CrossRef
10.
go back to reference S. Zu, Z. Wang, B. Liu, X. Fan, G. Qian, Synthesis of nano-CdxZn1−xS by precipitate-hydrothermal method and its photocatalytic activities. J. Alloys Compd. 476, 689–692 (2009)CrossRef S. Zu, Z. Wang, B. Liu, X. Fan, G. Qian, Synthesis of nano-CdxZn1xS by precipitate-hydrothermal method and its photocatalytic activities. J. Alloys Compd. 476, 689–692 (2009)CrossRef
11.
go back to reference L. Wang, R. Li, J. Liu, J. Han, M. Huang, Synthesis of Au@CdS core–shell nanoparticles and their photocatalytic capacity researched by SERS. J. Mater. Sci. 52, 1847–1855 (2017)CrossRef L. Wang, R. Li, J. Liu, J. Han, M. Huang, Synthesis of Au@CdS core–shell nanoparticles and their photocatalytic capacity researched by SERS. J. Mater. Sci. 52, 1847–1855 (2017)CrossRef
12.
go back to reference X. Maa, Q. Jianga, W. Guob, M. Zhenga, W. Xua, F. Maa, B. Hou, Fabrication of g-C3N4/Au/CdZnS Z-scheme photocatalytic to enhanced photocatalysis performance. J. RSC Adv. 34, 28263–28269 (2013) X. Maa, Q. Jianga, W. Guob, M. Zhenga, W. Xua, F. Maa, B. Hou, Fabrication of g-C3N4/Au/CdZnS Z-scheme photocatalytic to enhanced photocatalysis performance. J. RSC Adv. 34, 28263–28269 (2013)
13.
go back to reference P. Scherrer, Bestimmung der inneren Struktur und der Größe von Kolloidteilchen mittels Röntgenstrahlen. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, 98–100 (1918). P. Scherrer, Bestimmung der inneren Struktur und der Größe von Kolloidteilchen mittels Röntgenstrahlen. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, 98–100 (1918).
14.
go back to reference V. Uvarov, I. Popov, Metrological characterization of X-ray diffraction methods for determination of crystallite size in nano-scale materials. Mater. Charact. 58, 883–891 (2007)CrossRef V. Uvarov, I. Popov, Metrological characterization of X-ray diffraction methods for determination of crystallite size in nano-scale materials. Mater. Charact. 58, 883–891 (2007)CrossRef
15.
go back to reference J.I. Langford, A.J.C. Wilson, Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J. Appl. Crystallogr. 11, 102–113 (1978)CrossRef J.I. Langford, A.J.C. Wilson, Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J. Appl. Crystallogr. 11, 102–113 (1978)CrossRef
16.
go back to reference N. Soltani, A. Dehzangi, A. Kharazmi, E. Saion, W.M.M. Yunus, B.Y. Majlis, M.R. Zare, E. Gharibshahi, N. Khalilzadeh, Structural, optical and electrical properties of ZnS nanoparticles affecting by organic coating. Chalcogenide Lett. 11, 79–90 (2014) N. Soltani, A. Dehzangi, A. Kharazmi, E. Saion, W.M.M. Yunus, B.Y. Majlis, M.R. Zare, E. Gharibshahi, N. Khalilzadeh, Structural, optical and electrical properties of ZnS nanoparticles affecting by organic coating. Chalcogenide Lett. 11, 79–90 (2014)
17.
go back to reference I. Devadoss, P. Sakthivel, S. Muthukumaran, N. Sudhakar, Enhanced blue-light emission on Cd0.9−xZn0.1CrxS (0 ≤ x ≤ 0.05) quantum dots. J. Ceram. Int. 45, 3833–3838 (2018)CrossRef I. Devadoss, P. Sakthivel, S. Muthukumaran, N. Sudhakar, Enhanced blue-light emission on Cd0.9−xZn0.1CrxS (0 ≤ x ≤ 0.05) quantum dots. J. Ceram. Int. 45, 3833–3838 (2018)CrossRef
18.
go back to reference P. Sakthivel, T. Jayasri, J. Madhumitha, S. Mahalakshmi, N. Subhashini, Influence of Cd on optical and photoluminescence behavior of Zn0.98−xCdxMn0.02S quantum dots under Ar atmosphere. J. Optik 154, 74–82 (2018)CrossRef P. Sakthivel, T. Jayasri, J. Madhumitha, S. Mahalakshmi, N. Subhashini, Influence of Cd on optical and photoluminescence behavior of Zn0.98−xCdxMn0.02S quantum dots under Ar atmosphere. J. Optik 154, 74–82 (2018)CrossRef
19.
go back to reference I. Devadoss, S. Muthukumarann, Band gap tailoring and yellow band emission of Cd0.9xMnxZn0.1S (x = 0 to 0.05) nanoparticles: influence of Mn concentration. J. Mater. Sci. Semicond. Process. 41, 282–290 (2016)CrossRef I. Devadoss, S. Muthukumarann, Band gap tailoring and yellow band emission of Cd0.9xMnxZn0.1S (x = 0 to 0.05) nanoparticles: influence of Mn concentration. J. Mater. Sci. Semicond. Process. 41, 282–290 (2016)CrossRef
20.
go back to reference H. Wang, Y. Li, D. Shu, X. Chen, X. Liu, X. Wang, J. Zhang, H. Wang, CoPtx-loaded Zn0.5Cd0.5S nanocomposites for enhanced visible light photocatalytic H2 production. Int. J. Energy Res. 40, 1280–1286 (2016)CrossRef H. Wang, Y. Li, D. Shu, X. Chen, X. Liu, X. Wang, J. Zhang, H. Wang, CoPtx-loaded Zn0.5Cd0.5S nanocomposites for enhanced visible light photocatalytic H2 production. Int. J. Energy Res. 40, 1280–1286 (2016)CrossRef
21.
go back to reference X. Xu, R. Lu, X. Zhao, S. Xu, X. Lei, F. Zhangs, D.G. Evans, Fabrication and photocatalytic performance of a ZnxCd1−xS solid solution prepared by sulfuration of a single layered double hydroxide precursor. J. Appl. Catal. B Environ. 102, 147–156 (2011)CrossRef X. Xu, R. Lu, X. Zhao, S. Xu, X. Lei, F. Zhangs, D.G. Evans, Fabrication and photocatalytic performance of a ZnxCd1xS solid solution prepared by sulfuration of a single layered double hydroxide precursor. J. Appl. Catal. B Environ. 102, 147–156 (2011)CrossRef
22.
go back to reference B. Khamala, L. Franklin, Y. Malozovsky, A. Stewart, H. Saleem, D. Bagayoko, Calculated electronic, transport, and bulk properties of zinc-blende zinc sulphide (zb-ZnS). J. Comput. Condens. Matter 6, 18–23 (2016)CrossRef B. Khamala, L. Franklin, Y. Malozovsky, A. Stewart, H. Saleem, D. Bagayoko, Calculated electronic, transport, and bulk properties of zinc-blende zinc sulphide (zb-ZnS). J. Comput. Condens. Matter 6, 18–23 (2016)CrossRef
23.
go back to reference S. Joishy, A. Antony, P. Poornesh, R.J. Choudhary, B. Rajendra, Influence of Cd on structure, surface morphology, optical and electrical properties of nano crystalline ZnS films. J. Sens. Actuators A Phys. 303, 111719 (2020)CrossRef S. Joishy, A. Antony, P. Poornesh, R.J. Choudhary, B. Rajendra, Influence of Cd on structure, surface morphology, optical and electrical properties of nano crystalline ZnS films. J. Sens. Actuators A Phys. 303, 111719 (2020)CrossRef
24.
go back to reference M. Askari, N. Soltani, E. Saion, W. MahmoodMatYunus, H. MaryamErfani, M. Dorostkar, Structural and optical properties of PVP-capped nanocrystalline ZnxCd1−xS solid solutions. J. Superlattices Microstruct. 81, 193–201 (2015)CrossRef M. Askari, N. Soltani, E. Saion, W. MahmoodMatYunus, H. MaryamErfani, M. Dorostkar, Structural and optical properties of PVP-capped nanocrystalline ZnxCd1−xS solid solutions. J. Superlattices Microstruct. 81, 193–201 (2015)CrossRef
Metadata
Title
Bandgap engineering and plasmonically enhanced sun light photocatalyis in Au/Cd1−xZnxS nanocomposites
Authors
Pavan. P. Gotipamul
Karthik Dilly Rajan
Shweta Khanna
Maheswaran Rathinam
Siva Chidambaram
Publication date
09-06-2021
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 11/2022
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-021-06279-6

Other articles of this Issue 11/2022

Journal of Materials Science: Materials in Electronics 11/2022 Go to the issue