Skip to main content
Top
Published in:
Cover of the book

2020 | OriginalPaper | Chapter

Basic Techniques to Investigate the Nanostructured Materials

Authors : Navaneethan Duraisamy, Kavitha Kandiah, Balagurunathan Ramasamy

Published in: Integrative Nanomedicine for New Therapies

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter is to deliver the basic methods for the characterizations of nanostructured materials. There are different shapes of materials existing in the nanomaterials such as particles, sheets, roads, dots, balls and films. The crystalline structures and surface morphology of nanomaterials are clearly calibrated using advanced techniques such as X-ray diffraction, Field emission scanning electron microscopy and transmission electron microscopy. The chemical compositions and purity of materials are examined by Energy dispersive X-ray analysis, Fourier transform infrared analysis and X-ray photoelectron spectroscopy. The biological studies of nanomaterials are examined using bioactivity, anti-microbial activity and bio degradability. This review gives a comprehensive understanding of the physico-chemical and biological nature of the nanomaterials.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Akhavan, O., & Ghaderi, E. (2010). Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano, 4, 5731–5736.CrossRef Akhavan, O., & Ghaderi, E. (2010). Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano, 4, 5731–5736.CrossRef
go back to reference Al–Sagheer, F. A., & Merchant, S. (2011). Visco–elastic properties of chitosan–titania nano–composites. Carbohydrate Polymers, 85, 356–362.CrossRef Al–Sagheer, F. A., & Merchant, S. (2011). Visco–elastic properties of chitosan–titania nano–composites. Carbohydrate Polymers, 85, 356–362.CrossRef
go back to reference Barrett, E. P., Joyner, L. G., & Halenda, P. P. (1951). The determination of pore volume and area distributions in porous substances. Journal of the American Ceramic Society, 73, 373–380. Barrett, E. P., Joyner, L. G., & Halenda, P. P. (1951). The determination of pore volume and area distributions in porous substances. Journal of the American Ceramic Society, 73, 373–380.
go back to reference Chen, Y. L., Lee, H. P., Chan, H. Y., Sung, L. Y., Chen, H. C., & Hu, Y. C. (2007). Composite chondroitin-6-sulfate/dermatan sulfate/chitosan scaffolds for cartilage tissue engineering. Biomaterials, 28, 2294–2305.CrossRef Chen, Y. L., Lee, H. P., Chan, H. Y., Sung, L. Y., Chen, H. C., & Hu, Y. C. (2007). Composite chondroitin-6-sulfate/dermatan sulfate/chitosan scaffolds for cartilage tissue engineering. Biomaterials, 28, 2294–2305.CrossRef
go back to reference Choi, H. C., Ahn, H. J., Jung, Y. M., Lee, M. K., Shin, H. J., Kim, S. B., et al. (2004). Characterization of the structures of size-selected TiO2 nanoparticles using X-ray absorption spectroscopy. Applied Spectroscopy, 58, 598–602.CrossRef Choi, H. C., Ahn, H. J., Jung, Y. M., Lee, M. K., Shin, H. J., Kim, S. B., et al. (2004). Characterization of the structures of size-selected TiO2 nanoparticles using X-ray absorption spectroscopy. Applied Spectroscopy, 58, 598–602.CrossRef
go back to reference Duraisamy, N., Hong, S. J., & Choi, K. H. (2013). Deposition and characterization of silver nanowires embedded, PEDOT: PSS thin films via electrohydrodynamic atomization. Chemical Engineering Journal, 225, 887–894.CrossRef Duraisamy, N., Hong, S. J., & Choi, K. H. (2013). Deposition and characterization of silver nanowires embedded, PEDOT: PSS thin films via electrohydrodynamic atomization. Chemical Engineering Journal, 225, 887–894.CrossRef
go back to reference Duraisamy, N., Kandiah, K., Rajendran, R., Prabhu, S., Ramesh, R., & Dhanaraj, G. (2018). Electrochemical and photocatalytic investigation of nickel oxide for energy storage and wastewater treatment. Research on Chemical Intermediates, 44, 5653–5667.CrossRef Duraisamy, N., Kandiah, K., Rajendran, R., Prabhu, S., Ramesh, R., & Dhanaraj, G. (2018). Electrochemical and photocatalytic investigation of nickel oxide for energy storage and wastewater treatment. Research on Chemical Intermediates, 44, 5653–5667.CrossRef
go back to reference Kavitha, K., Chunyan, W., Navaneethan, D., Rajendran, V., Valiyaveettil, S., & Vinoth, A. (2013a). In vitro gene expression and preliminary in vivo studies of temperature-dependent titania–graphene composite for bone replacement applications. RSC Advances, 210, 43951–43961. Kavitha, K., Chunyan, W., Navaneethan, D., Rajendran, V., Valiyaveettil, S., & Vinoth, A. (2013a). In vitro gene expression and preliminary in vivo studies of temperature-dependent titania–graphene composite for bone replacement applications. RSC Advances, 210, 43951–43961.
go back to reference Kavitha, K., Prabhu, K., Rajendran, M., Manivasankan, V., Prabu, P., & Jayakumar, T. (2013b). Optimization of nano–titania and titania–chitosan nanocomposite to enhance biocompatibility. Current Nanoscience, 3, 308–317.CrossRef Kavitha, K., Prabhu, K., Rajendran, M., Manivasankan, V., Prabu, P., & Jayakumar, T. (2013b). Optimization of nano–titania and titania–chitosan nanocomposite to enhance biocompatibility. Current Nanoscience, 3, 308–317.CrossRef
go back to reference Kavitha, K., Prabhu, M., Selvam, M., & Rajendran, V. (2013c). TiO2–graphene nanocomposites for enhanced osteocalcin induction. Materials Science and Engineering C, 48, 252–262. Kavitha, K., Prabhu, M., Selvam, M., & Rajendran, V. (2013c). TiO2–graphene nanocomposites for enhanced osteocalcin induction. Materials Science and Engineering C, 48, 252–262.
go back to reference Kavitha, K., Sutha, S., Prabhu, M., Rajendran, V., & Jayakumar, T. (2013d). In situ synthesized novel biocompatible titania–chitosan nanocomposites with high surface area and antibacterial activity. Carbohydrate Polymers, 93, 731–739.CrossRef Kavitha, K., Sutha, S., Prabhu, M., Rajendran, V., & Jayakumar, T. (2013d). In situ synthesized novel biocompatible titania–chitosan nanocomposites with high surface area and antibacterial activity. Carbohydrate Polymers, 93, 731–739.CrossRef
go back to reference Kirk, S. E., Skepper, J. N., & Donald, A. M. (2009). Application of environmental scanning electron microscopy to determine biological surface structure. Journal of Microscopy, 233, 205–224.CrossRef Kirk, S. E., Skepper, J. N., & Donald, A. M. (2009). Application of environmental scanning electron microscopy to determine biological surface structure. Journal of Microscopy, 233, 205–224.CrossRef
go back to reference Krishnamoorthy, K., Kim, G. S., & Kim, S. J. (2013). Graphene nanosheets: Ultrasound assisted synthesis and characterization. Ultrasonics Sonochemistry, 20, 644–649.CrossRef Krishnamoorthy, K., Kim, G. S., & Kim, S. J. (2013). Graphene nanosheets: Ultrasound assisted synthesis and characterization. Ultrasonics Sonochemistry, 20, 644–649.CrossRef
go back to reference Manivasakan, P., & Rajendran, V. (2011). Synthesis of monoclinic and cubic ZrO2 nanoparticles from zircon. Journal of the American Ceramic Society, 94, 410–1420.CrossRef Manivasakan, P., & Rajendran, V. (2011). Synthesis of monoclinic and cubic ZrO2 nanoparticles from zircon. Journal of the American Ceramic Society, 94, 410–1420.CrossRef
go back to reference Manivasakan, P., Rajendran, V., Rauta, P. R., Sahu, B. B., Sahu, P., Panda, B. K., et al. (2010). Effect of TiO2 nanoparticles on properties of silica refractory. Journal of the American Ceramic Society, 93, 2236–2243.CrossRef Manivasakan, P., Rajendran, V., Rauta, P. R., Sahu, B. B., Sahu, P., Panda, B. K., et al. (2010). Effect of TiO2 nanoparticles on properties of silica refractory. Journal of the American Ceramic Society, 93, 2236–2243.CrossRef
go back to reference Murty, B. S., Shankar, P., Raj, B., Rath, B. B., & Murday, J. (2012). Tools to characterize Nanomaterials. In: Texbook of nanoscience and nanotechnology (pp. 149–175). Springer. ISBN 978-3-642-28030-6. Murty, B. S., Shankar, P., Raj, B., Rath, B. B., & Murday, J. (2012). Tools to characterize Nanomaterials. In: Texbook of nanoscience and nanotechnology (pp. 149–175). Springer. ISBN 978-3-642-28030-6.
go back to reference Nakayama, N., & Hayashi, T. (2007). Preparation and characterization of poly(l-lactic acid)/TiO2 nanoparticle nanocomposite films with high transparency and efficient photodegradability. Polymer Degradation and Stability, 92, 1255–1264.CrossRef Nakayama, N., & Hayashi, T. (2007). Preparation and characterization of poly(l-lactic acid)/TiO2 nanoparticle nanocomposite films with high transparency and efficient photodegradability. Polymer Degradation and Stability, 92, 1255–1264.CrossRef
go back to reference Rajkumar, M., Kavitha, K., Prabhu, M., Meenakshisundaram, N., & Rajendran, V. (2013). Nanohydroxyapatite–chitosan–gelatin polyelectrolyte complex with enhanced mechanical and bioactivity. Materials Science and Engineering C, 33, 3237–3244.CrossRef Rajkumar, M., Kavitha, K., Prabhu, M., Meenakshisundaram, N., & Rajendran, V. (2013). Nanohydroxyapatite–chitosan–gelatin polyelectrolyte complex with enhanced mechanical and bioactivity. Materials Science and Engineering C, 33, 3237–3244.CrossRef
go back to reference Rajkumar, M., Meenakshi Sundaram, N., & Rajendran, V. (2011). Preparation of size controlled, stoichiometric and bioresorbable hydroxyapatite nanorod by varying initial pH, Ca/P ratio and sintering temperature. Digest Journal of Nanomaterials and Biostructures, 6(1), 169–179. Rajkumar, M., Meenakshi Sundaram, N., & Rajendran, V. (2011). Preparation of size controlled, stoichiometric and bioresorbable hydroxyapatite nanorod by varying initial pH, Ca/P ratio and sintering temperature. Digest Journal of Nanomaterials and Biostructures, 6(1), 169–179.
go back to reference Selvam, M., Sakthipandi, K., Suriyaprabha, R., Saminathan, K., & Rajendran, V. (2013). Synthesis and characterisation of electrochemically–reduced graphene. Bulletin of Material Science, 36, 1315–1321.CrossRef Selvam, M., Sakthipandi, K., Suriyaprabha, R., Saminathan, K., & Rajendran, V. (2013). Synthesis and characterisation of electrochemically–reduced graphene. Bulletin of Material Science, 36, 1315–1321.CrossRef
go back to reference Vallet-Regi, M. (2001). Ceramics for medical applications. Journal of the Chemical Society, Dalton Transactions, 2, 97–108.CrossRef Vallet-Regi, M. (2001). Ceramics for medical applications. Journal of the Chemical Society, Dalton Transactions, 2, 97–108.CrossRef
go back to reference VanLandingham, M. R., Villarrubia, J. S., Guthrie, W. F., & Meyers, G. F. (2001). Nanoindentation of polymers: An overview. Macromolecular Symposium, 167, 15–43.CrossRef VanLandingham, M. R., Villarrubia, J. S., Guthrie, W. F., & Meyers, G. F. (2001). Nanoindentation of polymers: An overview. Macromolecular Symposium, 167, 15–43.CrossRef
go back to reference Wu, J. B., Lin, M. L., Cong, X., Liu, H. N., & Tan, P. H. (2018). Raman spectroscopy of graphene-based materials and its applications in related devices. Chemical Society Reviews, 47, 1822–1873.CrossRef Wu, J. B., Lin, M. L., Cong, X., Liu, H. N., & Tan, P. H. (2018). Raman spectroscopy of graphene-based materials and its applications in related devices. Chemical Society Reviews, 47, 1822–1873.CrossRef
go back to reference Xu, Q., Fan, H., Guo, Y., & Cao, Y. (2006). Preparation of titania/silica mesoporous composite with activated carbon template in supercritical carbon doixide. Material Science and Engineering A, 435, 158–162.CrossRef Xu, Q., Fan, H., Guo, Y., & Cao, Y. (2006). Preparation of titania/silica mesoporous composite with activated carbon template in supercritical carbon doixide. Material Science and Engineering A, 435, 158–162.CrossRef
go back to reference Yin, H. Y., Wada, Kitamura, T., Kambe, S., Murasawa, S., Mori, H., et al. (2001). Hydrothermal synthesis of nanosized anatase and rutile TiO2 using amorphous phase TiO2. Journal of Materials Chemistry, 11, 1694–1703.CrossRef Yin, H. Y., Wada, Kitamura, T., Kambe, S., Murasawa, S., Mori, H., et al. (2001). Hydrothermal synthesis of nanosized anatase and rutile TiO2 using amorphous phase TiO2. Journal of Materials Chemistry, 11, 1694–1703.CrossRef
go back to reference Yuan, N. Y., Tsai, R. Y., Ho, M. H., Wang, D. M., Lai, J. Y., & Hsieh, H. J. (2008). Fabrication and characterization of chondroitin sulfate-modified chitosan membranes for biomedical applications. Desalination, 234, 166–174.CrossRef Yuan, N. Y., Tsai, R. Y., Ho, M. H., Wang, D. M., Lai, J. Y., & Hsieh, H. J. (2008). Fabrication and characterization of chondroitin sulfate-modified chitosan membranes for biomedical applications. Desalination, 234, 166–174.CrossRef
go back to reference Zawadzki, J., & Kaczmarek, H. (2010). Thermal treatment of chitosan in various conditions. Carbohydrate Polymers, 80, 394–400.CrossRef Zawadzki, J., & Kaczmarek, H. (2010). Thermal treatment of chitosan in various conditions. Carbohydrate Polymers, 80, 394–400.CrossRef
go back to reference Zhang, X. Y., Li, H. P., Cui, X. L., & Lin, Y. (2010). Graphene/TiO2 nanocomposites: Synthesis, characterization and application in hydrogen evolution from water photocatalytic splitting. Journal of Materials Chemistry, 20, 2801–2806.CrossRef Zhang, X. Y., Li, H. P., Cui, X. L., & Lin, Y. (2010). Graphene/TiO2 nanocomposites: Synthesis, characterization and application in hydrogen evolution from water photocatalytic splitting. Journal of Materials Chemistry, 20, 2801–2806.CrossRef
go back to reference Zhang, X., Sun, Y., Cui, X., & Jiang, Z. (2012). A green and facile synthesis of TiO2/graphene nanocomposites and their photocatalytic activity for hydrogen evolution. International Journal of Hydrogen Energy, 37, 811–815.CrossRef Zhang, X., Sun, Y., Cui, X., & Jiang, Z. (2012). A green and facile synthesis of TiO2/graphene nanocomposites and their photocatalytic activity for hydrogen evolution. International Journal of Hydrogen Energy, 37, 811–815.CrossRef
go back to reference Zhao, L., Chang, J., & Zhai, W. (2009). Preparation and HL-7702 cell functionality of titania/chitosan composite scaffolds’. Journal of Materials Science Materials in Medicine, 20, 949–957.CrossRef Zhao, L., Chang, J., & Zhai, W. (2009). Preparation and HL-7702 cell functionality of titania/chitosan composite scaffolds’. Journal of Materials Science Materials in Medicine, 20, 949–957.CrossRef
Metadata
Title
Basic Techniques to Investigate the Nanostructured Materials
Authors
Navaneethan Duraisamy
Kavitha Kandiah
Balagurunathan Ramasamy
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-36260-7_1

Premium Partners