Skip to main content
Top
Published in: Wireless Networks 7/2022

20-06-2022 | Original Paper

Beam-shaping technique for plasma magneto-electric dipole planar array based on time-modulation and particle swarm optimization

Authors: Hend Abd El-Azem Malhat, Anas Saber Zainud-Deen

Published in: Wireless Networks | Issue 7/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, an approach for the synthesis of desired pattern in 4D antenna linear and planar arrays is proposed, taking into account practical element models. The element of the array is a plasma ME-dipole operating in the band 1.3–3.65 GHz with circular polarization characteristics of 13.3%, from 2.2 GHz to 2.52 GHz with 95% radiation efficiency. A linear arrangement of 16-element spaced by 0.65λ connected with 16 RF-switches with periodic switching frequency of 100 MHz is investigated using different switching time sequences. A planar array consists of 8 × 8 plasma ME-dipoles are designed for different beam shapes. The approach is based on the combination of the particle optimization technique (PSO) and the full-wave simulation using the finite integral technique (FIT). The time sequences are optimized by the PSO algorithm and the patterns at the fundamental frequency and sideband frequencies are synthesized and exported automatically to the array analyzes using the FIT technique. The time-domain excitations can be decomposed into a Fourier series in frequency-domain, thus obtaining equivalent complex excitation distributions at different frequencies. This paper introduces the applicability of planar array in the beam-shaping. Chebyshev, Taylor and binomial planar array are presented. This paper focuses on the pattern synthesis of 4D planar arrays taking into account the mutual coupling between the elements.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Haykin, S. S., & Moher, M. (2011). Modern wireless communications. Pearson Education India. Haykin, S. S., & Moher, M. (2011). Modern wireless communications. Pearson Education India.
2.
go back to reference Xiang, W., Zheng, K., & Shen, X. S. (2016). 5G mobile communications. Springer. Xiang, W., Zheng, K., & Shen, X. S. (2016). 5G mobile communications. Springer.
3.
go back to reference Nguyen, A. H., Cho, J.-H., Bae, H.-J., & Sung, H.-K. (2020). Side-lobe level reduction of an optical phased array using amplitude and phase modulation of array elements based on optically injection-locked semiconductor lasers. Photonics, 7(1), 20.CrossRef Nguyen, A. H., Cho, J.-H., Bae, H.-J., & Sung, H.-K. (2020). Side-lobe level reduction of an optical phased array using amplitude and phase modulation of array elements based on optically injection-locked semiconductor lasers. Photonics, 7(1), 20.CrossRef
4.
go back to reference Haupt, R. L. (2010). Antenna arrays: A computational approach. John Wiley & Sons.CrossRef Haupt, R. L. (2010). Antenna arrays: A computational approach. John Wiley & Sons.CrossRef
5.
go back to reference Allard, R. J., Werner, D. H., & Werner, P. L. (2003). Radiation pattern synthesis for arrays of conformal antennas mounted on arbitrarily-shaped three-dimensional platforms using genetic algorithms. IEEE transactions on antennas and propagation, 51(5), 1054–1062.CrossRef Allard, R. J., Werner, D. H., & Werner, P. L. (2003). Radiation pattern synthesis for arrays of conformal antennas mounted on arbitrarily-shaped three-dimensional platforms using genetic algorithms. IEEE transactions on antennas and propagation, 51(5), 1054–1062.CrossRef
6.
go back to reference Hakkarainen, A., Werner, J., Dandekar, K. R., & Valkama, M. (2013). Widely-linear beamforming and RF impairment suppression in massive antenna arrays. Journal of Communications and Networks, 15(4), 383–397.CrossRef Hakkarainen, A., Werner, J., Dandekar, K. R., & Valkama, M. (2013). Widely-linear beamforming and RF impairment suppression in massive antenna arrays. Journal of Communications and Networks, 15(4), 383–397.CrossRef
7.
go back to reference Li, M., Zhang, Z., Tang, M.-C., Yi, Da., & Ziolkowski, R. W. (2020). Compact series-fed microstrip patch arrays excited with Dolph-chebyshev distributions realized with slow wave transmission line feed networks. IEEE Transactions on Antennas and Propagation, 68(12), 7905–7915.CrossRef Li, M., Zhang, Z., Tang, M.-C., Yi, Da., & Ziolkowski, R. W. (2020). Compact series-fed microstrip patch arrays excited with Dolph-chebyshev distributions realized with slow wave transmission line feed networks. IEEE Transactions on Antennas and Propagation, 68(12), 7905–7915.CrossRef
8.
go back to reference Rao, N. A., Kanapala, S., & Sekhar, M. (2019). Wideband circular polarized binomial antenna array for L-band radar. In G. Panda, S. Satapathy, B. Biswal, & R. Bansal (Eds.), Microelectronics, electromagnetics and telecommunications (pp. 279–287). Springer.CrossRef Rao, N. A., Kanapala, S., & Sekhar, M. (2019). Wideband circular polarized binomial antenna array for L-band radar. In G. Panda, S. Satapathy, B. Biswal, & R. Bansal (Eds.), Microelectronics, electromagnetics and telecommunications (pp. 279–287). Springer.CrossRef
9.
go back to reference Sarker, M. A., Hossain, M. S., & Masud, M. S. (2016). Robust beamforming synthesis technique for low side lobe level using Taylor excited antenna array. In: 2016 2nd International Conference on Electrical, Computer & Telecommunication Engineering (ICECTE), pp. 1–4. IEEE. Sarker, M. A., Hossain, M. S., & Masud, M. S. (2016). Robust beamforming synthesis technique for low side lobe level using Taylor excited antenna array. In: 2016 2nd International Conference on Electrical, Computer & Telecommunication Engineering (ICECTE), pp. 1–4. IEEE.
10.
go back to reference Cen, L., Zhu Liang, Y., Ser, W., & Cen, W. (2011). Linear aperiodic array synthesis using an improved genetic algorithm. IEEE Transactions on Antennas and Propagation, 60(2), 895–902.MathSciNetCrossRef Cen, L., Zhu Liang, Y., Ser, W., & Cen, W. (2011). Linear aperiodic array synthesis using an improved genetic algorithm. IEEE Transactions on Antennas and Propagation, 60(2), 895–902.MathSciNetCrossRef
11.
go back to reference Marini, F., & Walczak, B. (2015). Particle swarm optimization (PSO). A tutorial. Chemometrics and Intelligent Laboratory Systems, 149, 153–165.CrossRef Marini, F., & Walczak, B. (2015). Particle swarm optimization (PSO). A tutorial. Chemometrics and Intelligent Laboratory Systems, 149, 153–165.CrossRef
12.
go back to reference Bogdan, G., Yashchyshyn, Y., & Jarzynka, M. (2016). Time-modulated antenna array with lossless switching network. IEEE Antennas and Wireless Propag. Lett., 15, 1827–1830.CrossRef Bogdan, G., Yashchyshyn, Y., & Jarzynka, M. (2016). Time-modulated antenna array with lossless switching network. IEEE Antennas and Wireless Propag. Lett., 15, 1827–1830.CrossRef
13.
go back to reference He, C., Wang, L., Chen, J., & Jin, R. (2018). Time-modulated arrays: A four-dimensional antenna array controlled by switches. Journal of Communications and Information Networks, 3(1), 1–14.CrossRef He, C., Wang, L., Chen, J., & Jin, R. (2018). Time-modulated arrays: A four-dimensional antenna array controlled by switches. Journal of Communications and Information Networks, 3(1), 1–14.CrossRef
14.
go back to reference Chakraborty, A., Ram, G., & Mandal, D. (2021). Multibeam steered pattern synthesis in time-modulated antenna array with controlled harmonic radiation. International Journal of RF and Microwave Computer‐Aided Engineering, 31(5), e22597.CrossRef Chakraborty, A., Ram, G., & Mandal, D. (2021). Multibeam steered pattern synthesis in time-modulated antenna array with controlled harmonic radiation. International Journal of RF and Microwave Computer‐Aided Engineering, 31(5), e22597.CrossRef
15.
go back to reference Zainud-Deen, A. S., Malhat, H. A., Badway, M. M., & Rihan, M. (2021). Full-wave simulation of time-modulated parabolic linear array using the method of moments. In: 38th National Radio Science Conference (NRSC), Egypt, B4. Zainud-Deen, A. S., Malhat, H. A., Badway, M. M., & Rihan, M. (2021). Full-wave simulation of time-modulated parabolic linear array using the method of moments. In: 38th National Radio Science Conference (NRSC), Egypt, B4.
16.
go back to reference Tennant, A., & Chambers, B. (2007). A two-element time-modulated array with direction-finding properties. IEEE Antennas Wirelss Propag. Lett., 6, 64–65.CrossRef Tennant, A., & Chambers, B. (2007). A two-element time-modulated array with direction-finding properties. IEEE Antennas Wirelss Propag. Lett., 6, 64–65.CrossRef
17.
go back to reference Maneiro-Catoira, R., Bregains, J., Garcia-Naya, J. A., & Castedo, L. (2020). Time-modulated array beamforming with periodic stair-step pulses. Signal Processing, 166, 107247.CrossRef Maneiro-Catoira, R., Bregains, J., Garcia-Naya, J. A., & Castedo, L. (2020). Time-modulated array beamforming with periodic stair-step pulses. Signal Processing, 166, 107247.CrossRef
18.
go back to reference Jozef, M., Yashchyshyn, Y., & Bogdan. G. (2019). 4D antennas design and technology–the state of the art. In: 2019 IEEE MTT-S International Wireless Symposium (IWS), pp. 1–3. IEEE. Jozef, M., Yashchyshyn, Y., & Bogdan. G. (2019). 4D antennas design and technology–the state of the art. In: 2019 IEEE MTT-S International Wireless Symposium (IWS), pp. 1–3. IEEE.
19.
go back to reference Qun, W.B. (2016). Design of magneto-electric dipole antennas, Ph.D. thesis, Dept. of Elect. Eng. City, University of Hong Kong. Qun, W.B. (2016). Design of magneto-electric dipole antennas, Ph.D. thesis, Dept. of Elect. Eng. City, University of Hong Kong.
20.
go back to reference Feng, B., Hong, W., Li, S., An, W., & Yin, S. (2013). A dual-wideband double-layer magneto electric dipole antenna with a modified horned reflector for 2G/3G/LTE applications. International Journal of Antennas and Propagation, 2013, 1–9.CrossRef Feng, B., Hong, W., Li, S., An, W., & Yin, S. (2013). A dual-wideband double-layer magneto electric dipole antenna with a modified horned reflector for 2G/3G/LTE applications. International Journal of Antennas and Propagation, 2013, 1–9.CrossRef
21.
go back to reference Malhat, H. A., & Zainud-Deen, S. H. (2020). Plasma-based artificial magnetic conductor for polarization reconfigurable dielectric resonator antenna. Plasmonics, 15(5), 1913–1924.CrossRef Malhat, H. A., & Zainud-Deen, S. H. (2020). Plasma-based artificial magnetic conductor for polarization reconfigurable dielectric resonator antenna. Plasmonics, 15(5), 1913–1924.CrossRef
22.
go back to reference Li, M., & Luk, K. (2015). Wideband magneto electric dipole antennas with dual polarization and circular polarization. IEEE Antennas and Propag. Magazine, 57(1), 110–119.CrossRef Li, M., & Luk, K. (2015). Wideband magneto electric dipole antennas with dual polarization and circular polarization. IEEE Antennas and Propag. Magazine, 57(1), 110–119.CrossRef
23.
go back to reference Anderson, T. (2011). Plasma antennas. Artech House. Anderson, T. (2011). Plasma antennas. Artech House.
24.
go back to reference Zainud-Deen, S. H., Malhat, H. A., & Shabayek, N. A. (2020). Reconfigurable RCS reduction from curved structures using plasma based FSS. Plasmonics, 15(12), 1–10. Zainud-Deen, S. H., Malhat, H. A., & Shabayek, N. A. (2020). Reconfigurable RCS reduction from curved structures using plasma based FSS. Plasmonics, 15(12), 1–10.
25.
go back to reference Zainud-Deen, S. H., El-shalaby, N. A., Malhat, H. A., & Gaber, S. M. (2019). Reconfigurable multi-turns planar plasma helical antenna. Plasmonics, 14(6), 1831–1837.CrossRef Zainud-Deen, S. H., El-shalaby, N. A., Malhat, H. A., & Gaber, S. M. (2019). Reconfigurable multi-turns planar plasma helical antenna. Plasmonics, 14(6), 1831–1837.CrossRef
26.
go back to reference Zainud-Deen, S. H., & Malhat, H. A. (2019). Electronic beam switching of circularly polarized plasma magneto-electric dipole array with multiple beams. Plasmonics, 14(4), 881–890.CrossRef Zainud-Deen, S. H., & Malhat, H. A. (2019). Electronic beam switching of circularly polarized plasma magneto-electric dipole array with multiple beams. Plasmonics, 14(4), 881–890.CrossRef
27.
go back to reference Baklanov, Y. V. (1966). Chebyshev distribution of currents for a plane array of radiators. Radio Engineering and Electronics Physics, 11, 640–642. Baklanov, Y. V. (1966). Chebyshev distribution of currents for a plane array of radiators. Radio Engineering and Electronics Physics, 11, 640–642.
28.
go back to reference Tseng, F. I., & Cheng, D. K. (1968). Optimum scannable planar arrays with an invariant sidelobe level. Proceedings of the IEEE, 56, 1771–1778.CrossRef Tseng, F. I., & Cheng, D. K. (1968). Optimum scannable planar arrays with an invariant sidelobe level. Proceedings of the IEEE, 56, 1771–1778.CrossRef
Metadata
Title
Beam-shaping technique for plasma magneto-electric dipole planar array based on time-modulation and particle swarm optimization
Authors
Hend Abd El-Azem Malhat
Anas Saber Zainud-Deen
Publication date
20-06-2022
Publisher
Springer US
Published in
Wireless Networks / Issue 7/2022
Print ISSN: 1022-0038
Electronic ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-022-03001-0

Other articles of this Issue 7/2022

Wireless Networks 7/2022 Go to the issue