Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 2/2017

21-12-2016

Bending Behavior of Porous Sintered Stainless Steel Fiber Honeycombs

Authors: Shuiping Zou, Zhenping Wan, Longsheng Lu, Yong Tang

Published in: Journal of Materials Engineering and Performance | Issue 2/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A novel porous honeycomb-type substrate has been developed using solid-state sintering stainless steel fibers. The porous sintered stainless steel fiber honeycombs (PSSSFH) are composed of a skeleton of sintered stainless steel fibers, three-dimensionally interconnected porous structures and multiple parallel microchannels. The bending behavior of the PSSSFH is investigated using three-point bending tests. Four stages, including an elastic stage, a yielding stage with a plateau, a hardening stage and a failure stage, are observed during the bending process of the PSSSFH. In the initial yielding stage, the bending forces increase slowly with displacement increasing, and then a yielding plateau follows, which is unique compared with other porous materials. Moreover, the structure parameters of the PSSSFH are varied to investigate the influence on the bending strength. It is determined that the multiple parallel microchannels can enhance the bending strength of porous stainless steel fiber sintered substrates (PSSFSS) and do not influence the variation trend of bending strength of PSSFSS with porosity increasing. The open ratio is conducive to increasing the bending strength, and the microchannel diameters ranging from 0.5 mm to 1.5 mm have little influence on the bending strength. In addition, both the increasing of sintering temperature and sintering time can strengthen the PSSSFH.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference B. Zhang and T.N. Chen, Calculation of Sound Absorption Characteristics of Porous Sintered Fiber Metal, Appl. Acoust., 2009, 70(2), p 337–346CrossRef B. Zhang and T.N. Chen, Calculation of Sound Absorption Characteristics of Porous Sintered Fiber Metal, Appl. Acoust., 2009, 70(2), p 337–346CrossRef
2.
go back to reference J.C. Tan and T.W. Clyne, Ferrous Fibre Network Materials for Jet Noise Reduction in Aeroengines Part II: Thermo-Mechanical Stability, Adv. Eng. Mater., 2008, 10(3), p 201–209CrossRef J.C. Tan and T.W. Clyne, Ferrous Fibre Network Materials for Jet Noise Reduction in Aeroengines Part II: Thermo-Mechanical Stability, Adv. Eng. Mater., 2008, 10(3), p 201–209CrossRef
3.
go back to reference E. Reichelt, M.P. Heddrich, M. Jahn, and A. Michaelis, Fiber Based Structured Materials for Catalytic Applications, Appl. Catal. A Gen., 2014, 476, p 78–90CrossRef E. Reichelt, M.P. Heddrich, M. Jahn, and A. Michaelis, Fiber Based Structured Materials for Catalytic Applications, Appl. Catal. A Gen., 2014, 476, p 78–90CrossRef
4.
go back to reference P.Y. Yi, L.F. Peng, X.M. Lai, M.T. Li, and J. Ni, Investigation of Sintered Stainless Steel Fiber Felt as Gas Diffusion Layer in Proton Exchange Membrane Fuel Cells, Int. J. Hydrogen Energy, 2012, 37(15), p 11334–11344CrossRef P.Y. Yi, L.F. Peng, X.M. Lai, M.T. Li, and J. Ni, Investigation of Sintered Stainless Steel Fiber Felt as Gas Diffusion Layer in Proton Exchange Membrane Fuel Cells, Int. J. Hydrogen Energy, 2012, 37(15), p 11334–11344CrossRef
5.
go back to reference Z.P. Xi, J.L. Zhu, H.P. Tang, Q.B. Ao, H. Zhao, J.Y. Wang, and C. Li, Progress of Application Researches of Porous Fiber Metals, Materials, 2011, 4(4), p 816–824CrossRef Z.P. Xi, J.L. Zhu, H.P. Tang, Q.B. Ao, H. Zhao, J.Y. Wang, and C. Li, Progress of Application Researches of Porous Fiber Metals, Materials, 2011, 4(4), p 816–824CrossRef
6.
go back to reference J. Banhart, Manufacture, Characterisation and Application of Cellular Metals and Metal Foams, Prog. Mater Sci., 2001, 46(6), p 559–632CrossRef J. Banhart, Manufacture, Characterisation and Application of Cellular Metals and Metal Foams, Prog. Mater Sci., 2001, 46(6), p 559–632CrossRef
7.
go back to reference V.N. Malheiro, J.N. Skepper, R.A. Brooks, and A.E. Markaki, In Vitro Osteoblast Response to Ferritic Stainless Steel Fiber Networks for Magneto-Active Layers on Implants, J. Biomed. Mater. Res. A, 2013, 101A(6), p 1588–1598CrossRef V.N. Malheiro, J.N. Skepper, R.A. Brooks, and A.E. Markaki, In Vitro Osteoblast Response to Ferritic Stainless Steel Fiber Networks for Magneto-Active Layers on Implants, J. Biomed. Mater. Res. A, 2013, 101A(6), p 1588–1598CrossRef
8.
go back to reference W. Zhou, Y. Tang, M.Q. Pan, X.L. Wei, and J.H. Xiang, Experimental Investigation on Uniaxial Tensile Properties of High-Porosity Metal Fiber Sintered Sheet, Mater. Sci. Eng. A, 2009, 525(1–2), p 133–137CrossRef W. Zhou, Y. Tang, M.Q. Pan, X.L. Wei, and J.H. Xiang, Experimental Investigation on Uniaxial Tensile Properties of High-Porosity Metal Fiber Sintered Sheet, Mater. Sci. Eng. A, 2009, 525(1–2), p 133–137CrossRef
9.
go back to reference W. Zhou, Y. Tang, B. Liu, R. Song, L.L. Jiang, K.S. Hui, K.N. Hui, and H.M. Yao, Compressive Properties of Porous Metal Fiber Sintered Sheet Produced by Solid-State Sintering Process, Mater. Des., 2012, 35, p 414–418CrossRef W. Zhou, Y. Tang, B. Liu, R. Song, L.L. Jiang, K.S. Hui, K.N. Hui, and H.M. Yao, Compressive Properties of Porous Metal Fiber Sintered Sheet Produced by Solid-State Sintering Process, Mater. Des., 2012, 35, p 414–418CrossRef
10.
go back to reference Z.W. Wan, B. Liu, W. Zhou, Y. Tang, K.S. Hui, and K.N. Hui, Experimental Study on Shear Properties of Porous Metal Fiber Sintered Sheet, Mater. Sci. Eng. A, 2012, 544, p 33–37CrossRef Z.W. Wan, B. Liu, W. Zhou, Y. Tang, K.S. Hui, and K.N. Hui, Experimental Study on Shear Properties of Porous Metal Fiber Sintered Sheet, Mater. Sci. Eng. A, 2012, 544, p 33–37CrossRef
11.
go back to reference W. Zhou, Q.H. Wang, W.S. Ling, L.Z. He, Y. Tong, F. Wu, and J.L. Liao, Characterization of Three- and Four-Point Bending Properties of Porous Metal Fiber Sintered Sheet, Mater. Des., 2014, 56, p 522–527CrossRef W. Zhou, Q.H. Wang, W.S. Ling, L.Z. He, Y. Tong, F. Wu, and J.L. Liao, Characterization of Three- and Four-Point Bending Properties of Porous Metal Fiber Sintered Sheet, Mater. Des., 2014, 56, p 522–527CrossRef
12.
go back to reference P. Ducheyne, E. Aernoudt, and P.D. Meester, The Mechanical Behaviour of Porous Austenitic Stainless Steel Fibre Structures, J. Mater. Sci., 1978, 13(12), p 2650–2658CrossRef P. Ducheyne, E. Aernoudt, and P.D. Meester, The Mechanical Behaviour of Porous Austenitic Stainless Steel Fibre Structures, J. Mater. Sci., 1978, 13(12), p 2650–2658CrossRef
13.
go back to reference A.E. Markaki, V. Gergely, A. Cockburn, and T.W. Clyne, Production of a Highly Porous Material by Liquid Phase Sintering of Short Ferritic Stainless Steel Fibres and a Preliminary Study of Its Mechanical Behaviour, Compos. Sci. Technol., 2003, 63(16), p 2345–2351CrossRef A.E. Markaki, V. Gergely, A. Cockburn, and T.W. Clyne, Production of a Highly Porous Material by Liquid Phase Sintering of Short Ferritic Stainless Steel Fibres and a Preliminary Study of Its Mechanical Behaviour, Compos. Sci. Technol., 2003, 63(16), p 2345–2351CrossRef
14.
go back to reference T.W. Clyne, A.E. Markaki, and J.C. Tan, Mechanical and Magnetic Properties of Metal Fibre Networks, with and without a Polymeric Matrix, Compos. Sci. Technol., 2005, 65(15–16), p 2492–2499CrossRef T.W. Clyne, A.E. Markaki, and J.C. Tan, Mechanical and Magnetic Properties of Metal Fibre Networks, with and without a Polymeric Matrix, Compos. Sci. Technol., 2005, 65(15–16), p 2492–2499CrossRef
15.
go back to reference J.C. Qiao, Z.P. Xi, H.P. Tang, J.Y. Wang, and J.L. Zhu, Influence of Porosity on Quasi-Static Compressive Properties of Porous Metal Media Fabricated by Stainless Steel Fibers, Mater. Des., 2009, 30(7), p 2737–2740CrossRef J.C. Qiao, Z.P. Xi, H.P. Tang, J.Y. Wang, and J.L. Zhu, Influence of Porosity on Quasi-Static Compressive Properties of Porous Metal Media Fabricated by Stainless Steel Fibers, Mater. Des., 2009, 30(7), p 2737–2740CrossRef
16.
go back to reference C.B. Fang, Z.P. Wan, B. Liu, and L.S. Lu, A Novel Sintered Stainless Steel Fiber Felt with Rough Surface Morphologies, Adv. Mater. Sci. Eng., 2014, 2014, p 1–7CrossRef C.B. Fang, Z.P. Wan, B. Liu, and L.S. Lu, A Novel Sintered Stainless Steel Fiber Felt with Rough Surface Morphologies, Adv. Mater. Sci. Eng., 2014, 2014, p 1–7CrossRef
17.
go back to reference P. Liu, Q.H. Zhao, G. He, Y.M. Qiao, H. Li, J.J. Zheng, J.P. Li, and Y.X. Zhang, Fabrication of Entangled Tough Titanium Wires Materials and Influence on Three-Dimensional Structure and Properties, J. Mater. Eng. Perform., 2014, 23(3), p 954–966CrossRef P. Liu, Q.H. Zhao, G. He, Y.M. Qiao, H. Li, J.J. Zheng, J.P. Li, and Y.X. Zhang, Fabrication of Entangled Tough Titanium Wires Materials and Influence on Three-Dimensional Structure and Properties, J. Mater. Eng. Perform., 2014, 23(3), p 954–966CrossRef
18.
go back to reference Y. Tang, W. Zhou, J.H. Xiang, W.Y. Liu, and M.Q. Pan, An Innovative Fabrication Process of Porous Metal Fiber Sintered Felts with Three-Dimensional Reticulated Structure, Mater. Manuf. Process., 2010, 25(7), p 565–571CrossRef Y. Tang, W. Zhou, J.H. Xiang, W.Y. Liu, and M.Q. Pan, An Innovative Fabrication Process of Porous Metal Fiber Sintered Felts with Three-Dimensional Reticulated Structure, Mater. Manuf. Process., 2010, 25(7), p 565–571CrossRef
19.
go back to reference F. Ribeiro, J.M. Silva, E. Silva, M.F. Vaz, and F.A.C. Oliveira, Catalytic Combustion of Toluene on Pt Zeolite Coated Cordierite Foams, Catal. Today, 2011, 176(1), p 93–96CrossRef F. Ribeiro, J.M. Silva, E. Silva, M.F. Vaz, and F.A.C. Oliveira, Catalytic Combustion of Toluene on Pt Zeolite Coated Cordierite Foams, Catal. Today, 2011, 176(1), p 93–96CrossRef
20.
go back to reference L.L. Yan, B. Han, B. Yu, C.Q. Chen, Q.C. Zhang, and T.J. Lu, Three-Point Bending of Sandwich Beams with Aluminum Foam-Filled Corrugated Cores, Mater. Des., 2014, 60, p 510–519CrossRef L.L. Yan, B. Han, B. Yu, C.Q. Chen, Q.C. Zhang, and T.J. Lu, Three-Point Bending of Sandwich Beams with Aluminum Foam-Filled Corrugated Cores, Mater. Des., 2014, 60, p 510–519CrossRef
21.
go back to reference S.K. Hyuna, H. Nakajima, L.V. Boykob, and V.I. Shapovalovc, Bending Properties of Porous Copper Fabricated by Unidirectional Solidification, Mater. Lett., 2004, 58(6), p 1082–1086CrossRef S.K. Hyuna, H. Nakajima, L.V. Boykob, and V.I. Shapovalovc, Bending Properties of Porous Copper Fabricated by Unidirectional Solidification, Mater. Lett., 2004, 58(6), p 1082–1086CrossRef
22.
go back to reference I.H. Oh, N. Nomura, N. Masahashi, and S. Hanada, Mechanical Properties of Porous Titanium Compacts Prepared by Powder Sintering, Scr. Mater., 2003, 49(12), p 1197–1202CrossRef I.H. Oh, N. Nomura, N. Masahashi, and S. Hanada, Mechanical Properties of Porous Titanium Compacts Prepared by Powder Sintering, Scr. Mater., 2003, 49(12), p 1197–1202CrossRef
23.
go back to reference Z. Lu, Z.H. Huang, S.S Jiang, W. Liu, and K.F. Zhang, Influencing Factors for the Microstructure and Mechanical Properties of Micro Porous Titanium Manufactured by Metal Injection Molding, Materials, 2016, 6(4), p 83(1–10) Z. Lu, Z.H. Huang, S.S Jiang, W. Liu, and K.F. Zhang, Influencing Factors for the Microstructure and Mechanical Properties of Micro Porous Titanium Manufactured by Metal Injection Molding, Materials, 2016, 6(4), p 83(1–10)
24.
go back to reference N.Z. Wang, X. Chen, A. Li, Y.X. Li, H.W. Zhang, and Y. Liu, Three-Point Bending Performance of a New Aluminum Foam Composite Structure, Trans. Nonferrous Met. Soc. China, 2016, 26(2), p 359–368CrossRef N.Z. Wang, X. Chen, A. Li, Y.X. Li, H.W. Zhang, and Y. Liu, Three-Point Bending Performance of a New Aluminum Foam Composite Structure, Trans. Nonferrous Met. Soc. China, 2016, 26(2), p 359–368CrossRef
25.
go back to reference D. Poquillon, V. Baco-Carles, Ph Tailhades, and E. Andrieu, Cold Compaction of Iron Powders-Relations between Powder Morphology and Mechanical Properties Part II. Bending Tests: Results and Analysis, Powder Technol., 2002, 126(1), p 75–84CrossRef D. Poquillon, V. Baco-Carles, Ph Tailhades, and E. Andrieu, Cold Compaction of Iron Powders-Relations between Powder Morphology and Mechanical Properties Part II. Bending Tests: Results and Analysis, Powder Technol., 2002, 126(1), p 75–84CrossRef
Metadata
Title
Bending Behavior of Porous Sintered Stainless Steel Fiber Honeycombs
Authors
Shuiping Zou
Zhenping Wan
Longsheng Lu
Yong Tang
Publication date
21-12-2016
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 2/2017
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-016-2452-2

Other articles of this Issue 2/2017

Journal of Materials Engineering and Performance 2/2017 Go to the issue

Premium Partners