Skip to main content
Top
Published in: Acta Mechanica Sinica 5/2018

02-04-2018 | Research Paper

Bending of Euler–Bernoulli nanobeams based on the strain-driven and stress-driven nonlocal integral models: a numerical approach

Authors: M. Faraji Oskouie, R. Ansari, H. Rouhi

Published in: Acta Mechanica Sinica | Issue 5/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Eringen’s nonlocal elasticity theory is extensively employed for the analysis of nanostructures because it is able to capture nanoscale effects. Previous studies have revealed that using the differential form of the strain-driven version of this theory leads to paradoxical results in some cases, such as bending analysis of cantilevers, and recourse must be made to the integral version. In this article, a novel numerical approach is developed for the bending analysis of Euler–Bernoulli nanobeams in the context of strain- and stress-driven integral nonlocal models. This numerical approach is proposed for the direct solution to bypass the difficulties related to converting the integral governing equation into a differential equation. First, the governing equation is derived based on both strain-driven and stress-driven nonlocal models by means of the minimum total potential energy. Also, in each case, the governing equation is obtained in both strong and weak forms. To solve numerically the derived equations, matrix differential and integral operators are constructed based upon the finite difference technique and trapezoidal integration rule. It is shown that the proposed numerical approach can be efficiently applied to the strain-driven nonlocal model with the aim of resolving the mentioned paradoxes. Also, it is able to solve the problem based on the strain-driven model without inconsistencies of the application of this model that are reported in the literature.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Peng, X.L., Li, X.F., Tang, G.J.: Effect of scale parameter on the deflection of a nonlocal beam and application to energy release rate of a crack. ZAMM. Z. Angew. Math. Mech. 95, 1428–1438 (2015)MathSciNetCrossRef Peng, X.L., Li, X.F., Tang, G.J.: Effect of scale parameter on the deflection of a nonlocal beam and application to energy release rate of a crack. ZAMM. Z. Angew. Math. Mech. 95, 1428–1438 (2015)MathSciNetCrossRef
2.
go back to reference Ansari, R., Gholami, R., Rouhi, H.: Size-dependent nonlinear forced vibration analysis of magneto-electro-thermo-elastic timoshenko nanobeams based upon the nonlocal elasticity theory. Compos. Struct. 126, 216–226 (2015)CrossRef Ansari, R., Gholami, R., Rouhi, H.: Size-dependent nonlinear forced vibration analysis of magneto-electro-thermo-elastic timoshenko nanobeams based upon the nonlocal elasticity theory. Compos. Struct. 126, 216–226 (2015)CrossRef
3.
go back to reference Cajic, M., Karlicic, D., Lazarevic, M.: Nonlocal vibration of a fractional order viscoelastic nanobeam with attached nanoparticle. Theor. Appl. Mech. 42, 167–190 (2015)CrossRef Cajic, M., Karlicic, D., Lazarevic, M.: Nonlocal vibration of a fractional order viscoelastic nanobeam with attached nanoparticle. Theor. Appl. Mech. 42, 167–190 (2015)CrossRef
4.
go back to reference Yan, Z., Wei, C., Zhang, C.: Band structures of transverse waves in nanoscale multilayered phononic crystals with nonlocal interface imperfections by using the radial basis function method. Acta Mech. Sin. 33, 415–428 (2017)MathSciNetCrossRef Yan, Z., Wei, C., Zhang, C.: Band structures of transverse waves in nanoscale multilayered phononic crystals with nonlocal interface imperfections by using the radial basis function method. Acta Mech. Sin. 33, 415–428 (2017)MathSciNetCrossRef
5.
go back to reference Ansari, R., Faraji Oskouie, M., Sadeghi, F.: Free vibration of fractional viscoelastic Timoshenko nanobeams using the nonlocal elasticity theory. Physica E 74, 318–327 (2015)CrossRef Ansari, R., Faraji Oskouie, M., Sadeghi, F.: Free vibration of fractional viscoelastic Timoshenko nanobeams using the nonlocal elasticity theory. Physica E 74, 318–327 (2015)CrossRef
6.
go back to reference Kahrobaiyan, M.H., Asghari, M., Rahaeifard, M.: A nonlinear strain gradient beam formulation. Int. J. Eng. Sci. 49, 1256–1267 (2011)MathSciNetCrossRef Kahrobaiyan, M.H., Asghari, M., Rahaeifard, M.: A nonlinear strain gradient beam formulation. Int. J. Eng. Sci. 49, 1256–1267 (2011)MathSciNetCrossRef
7.
go back to reference Vatankhah, R., Kahrobaiyan, M.H., Alasti, A.: Nonlinear forced vibration strain gradient microbeams. Appl. Math. Model. 37, 8363–8382 (2013)MathSciNetCrossRef Vatankhah, R., Kahrobaiyan, M.H., Alasti, A.: Nonlinear forced vibration strain gradient microbeams. Appl. Math. Model. 37, 8363–8382 (2013)MathSciNetCrossRef
8.
go back to reference Al-Basyouni, K.S., Tounsi, A., Mahmoud, S.R.: Size Dependent Bending and Vibration Analysis of Functionally Graded Micro Beams Based on Modified Couple Stress Theory and Neutral Surface Position. Compos. Struct. 125, 621–630 (2015)CrossRef Al-Basyouni, K.S., Tounsi, A., Mahmoud, S.R.: Size Dependent Bending and Vibration Analysis of Functionally Graded Micro Beams Based on Modified Couple Stress Theory and Neutral Surface Position. Compos. Struct. 125, 621–630 (2015)CrossRef
9.
go back to reference Mohammadi, H., Mahzoon, M.: Investigating thermal effects in nonlinear buckling analysis of micro beams using modified strain gradient theory. IJST Trans. Mech. Eng. 38, 303–320 (2014) Mohammadi, H., Mahzoon, M.: Investigating thermal effects in nonlinear buckling analysis of micro beams using modified strain gradient theory. IJST Trans. Mech. Eng. 38, 303–320 (2014)
10.
go back to reference Ansari, R., Pourashraf, T., Gholami, R.: An exact solution for the nonlinear forced vibration of functionally graded nanobeams in thermal environment based on surface elasticity theory. Thin Walled Struct. 93, 169–176 (2015)CrossRef Ansari, R., Pourashraf, T., Gholami, R.: An exact solution for the nonlinear forced vibration of functionally graded nanobeams in thermal environment based on surface elasticity theory. Thin Walled Struct. 93, 169–176 (2015)CrossRef
11.
go back to reference Chiu, M.S., Chen, T.: Bending and Resonance Behavior of Nanowires Based on Timoshenko Beam Theory with High-Order Surface Stress Effects. Physica E 54, 149–156 (2013)CrossRef Chiu, M.S., Chen, T.: Bending and Resonance Behavior of Nanowires Based on Timoshenko Beam Theory with High-Order Surface Stress Effects. Physica E 54, 149–156 (2013)CrossRef
12.
go back to reference Ansari, R., Gholami, R., Norouzzadeh, A.: Surface stress effect on the vibration and instability of nanoscale pipes conveying fluid based on a size-dependent Timoshenko beam model. Acta Mech. Sin. 31, 708–719 (2015)MathSciNetCrossRef Ansari, R., Gholami, R., Norouzzadeh, A.: Surface stress effect on the vibration and instability of nanoscale pipes conveying fluid based on a size-dependent Timoshenko beam model. Acta Mech. Sin. 31, 708–719 (2015)MathSciNetCrossRef
13.
go back to reference Amirian, B., Hosseini-Ara, R., Moosavi, H.: Surface and thermal effects on vibration of embedded alumina nanobeams based on novel Timoshenko beam model. Appl. Math. Mech. 35, 875–886 (2014)MathSciNetCrossRef Amirian, B., Hosseini-Ara, R., Moosavi, H.: Surface and thermal effects on vibration of embedded alumina nanobeams based on novel Timoshenko beam model. Appl. Math. Mech. 35, 875–886 (2014)MathSciNetCrossRef
14.
go back to reference Ansari, R., Mohammdi, V., Faghih Shojaei, M.: Nonlinear vibration analysis of Timoshenko nanobeams based on surface stress elasticity theory. Eur. J. Mech. A Solids 45, 143–152 (2014)MathSciNetCrossRef Ansari, R., Mohammdi, V., Faghih Shojaei, M.: Nonlinear vibration analysis of Timoshenko nanobeams based on surface stress elasticity theory. Eur. J. Mech. A Solids 45, 143–152 (2014)MathSciNetCrossRef
15.
go back to reference Hosseini-Hashemi, S., Nazemnezhad, R.: An analytical study on the nonlinear free vibration of functionally graded nanobeams incorporating surface effects. Compos. Part B 52, 199–206 (2013)CrossRef Hosseini-Hashemi, S., Nazemnezhad, R.: An analytical study on the nonlinear free vibration of functionally graded nanobeams incorporating surface effects. Compos. Part B 52, 199–206 (2013)CrossRef
16.
go back to reference Ansari, R., Hosseini, K., Darvizeh, A.: A sixth-order compact finite difference method for non-classical vibration analysis of nanobeams including surface stress effects. Appl. Math. Comput. 219, 4977–4991 (2013)MathSciNetMATH Ansari, R., Hosseini, K., Darvizeh, A.: A sixth-order compact finite difference method for non-classical vibration analysis of nanobeams including surface stress effects. Appl. Math. Comput. 219, 4977–4991 (2013)MathSciNetMATH
17.
go back to reference Kröner, E.: Elasticity theory of materials with long range cohesive forces. Int. J. Solids Struct. 3, 731–742 (1967)CrossRef Kröner, E.: Elasticity theory of materials with long range cohesive forces. Int. J. Solids Struct. 3, 731–742 (1967)CrossRef
18.
go back to reference Krumhansl, J.: Some considerations of the relation between solid state physics and generalized continuum mechanics. In: Kröner, E. (ed.) Mechanics of Generalized Continua, IUTAM Symposia, Springer, Berlin, 298–311 (1968)CrossRef Krumhansl, J.: Some considerations of the relation between solid state physics and generalized continuum mechanics. In: Kröner, E. (ed.) Mechanics of Generalized Continua, IUTAM Symposia, Springer, Berlin, 298–311 (1968)CrossRef
19.
go back to reference Kunin, I.A.: The theory of elastic media with microstructure and the theory of dislocations. In: Mechanics of Generalized Continua, IUTAM symposia, Springer, Berlin, 321–329 (1968)CrossRef Kunin, I.A.: The theory of elastic media with microstructure and the theory of dislocations. In: Mechanics of Generalized Continua, IUTAM symposia, Springer, Berlin, 321–329 (1968)CrossRef
22.
go back to reference Eringen, A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54, 4703–4710 (1983)CrossRef Eringen, A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54, 4703–4710 (1983)CrossRef
23.
go back to reference Arash, B., Wang, Q.: A review on the application of nonlocal elastic models in modeling of carbon nanotubes and graphenes. Comput. Mater. Sci. 51, 303–313 (2012)CrossRef Arash, B., Wang, Q.: A review on the application of nonlocal elastic models in modeling of carbon nanotubes and graphenes. Comput. Mater. Sci. 51, 303–313 (2012)CrossRef
24.
go back to reference Wang, K.F., Wang, B.L., Kitamura, T.: A review on the application of modified continuum models in modeling and simulation of nanostructures. Acta Mech. Sin. 32, 83–100 (2016)MathSciNetCrossRef Wang, K.F., Wang, B.L., Kitamura, T.: A review on the application of modified continuum models in modeling and simulation of nanostructures. Acta Mech. Sin. 32, 83–100 (2016)MathSciNetCrossRef
25.
go back to reference Eltaher, M.A., Khater, M.E., Emam, S.A.: A review on nonlocal elastic models for bending, buckling, vibrations, and wave propagation of nanoscale beams. Appl. Math. Model. 40, 4109–4128 (2016)MathSciNetCrossRef Eltaher, M.A., Khater, M.E., Emam, S.A.: A review on nonlocal elastic models for bending, buckling, vibrations, and wave propagation of nanoscale beams. Appl. Math. Model. 40, 4109–4128 (2016)MathSciNetCrossRef
26.
go back to reference Challamel, N., Wang, C.: The small length scale effect for a non-local cantilever beam: a paradox solved. Nanotechnology 19, 345703 (2008)CrossRef Challamel, N., Wang, C.: The small length scale effect for a non-local cantilever beam: a paradox solved. Nanotechnology 19, 345703 (2008)CrossRef
27.
28.
go back to reference Challamel, N., Zhang, Z., Wang, C.M.: On nonconservativeness of Eringen’s nonlocal elasticity in beam mechanics: correction from a discrete-based approach. Arch. Appl. Mech. 84, 1275–1292 (2014)CrossRef Challamel, N., Zhang, Z., Wang, C.M.: On nonconservativeness of Eringen’s nonlocal elasticity in beam mechanics: correction from a discrete-based approach. Arch. Appl. Mech. 84, 1275–1292 (2014)CrossRef
29.
go back to reference Reddy, J.N., El-Borgi, S.: Eringen’s nonlocal theories of beam accounting for moderate rotations. Int. J. Eng. Sci. 82, 159–77 (2014)MathSciNetCrossRef Reddy, J.N., El-Borgi, S.: Eringen’s nonlocal theories of beam accounting for moderate rotations. Int. J. Eng. Sci. 82, 159–77 (2014)MathSciNetCrossRef
30.
go back to reference Zhang, Y.: Frequency spectra of nonlocal Timoshenko beams and an effective method of determining nonlocal effect. Int. J. Mech. Sci. 128–129, 572–582 (2017)CrossRef Zhang, Y.: Frequency spectra of nonlocal Timoshenko beams and an effective method of determining nonlocal effect. Int. J. Mech. Sci. 128–129, 572–582 (2017)CrossRef
31.
go back to reference Fernández-Sáez, J., Zaera, R., Loya, J.A.: Bending of Euler-Bernoulli beams using Eringen’s integral formulation: a paradox resolved. Int. J. Eng. Sci. 99, 107–116 (2016)MathSciNetCrossRef Fernández-Sáez, J., Zaera, R., Loya, J.A.: Bending of Euler-Bernoulli beams using Eringen’s integral formulation: a paradox resolved. Int. J. Eng. Sci. 99, 107–116 (2016)MathSciNetCrossRef
32.
go back to reference Tuna, M., Kirca, M.: Exact solution of Eringen’s nonlocal integral model for bending of Euler-Bernoulli and Timoshenko beams. Int. J. Eng. Sci. 105, 80–92 (2016)MathSciNetCrossRef Tuna, M., Kirca, M.: Exact solution of Eringen’s nonlocal integral model for bending of Euler-Bernoulli and Timoshenko beams. Int. J. Eng. Sci. 105, 80–92 (2016)MathSciNetCrossRef
33.
go back to reference Norouzzadeh, A., Ansari, R.: Finite element analysis of nano-scale Timoshenko beams using the integral model of nonlocal elasticity. Physica E 88, 194–200 (2017)CrossRef Norouzzadeh, A., Ansari, R.: Finite element analysis of nano-scale Timoshenko beams using the integral model of nonlocal elasticity. Physica E 88, 194–200 (2017)CrossRef
34.
go back to reference Norouzzadeh, A., Ansari, R., Rouhi, H.: Pre-buckling responses of Timoshenko nanobeams based on the integral and differential models of nonlocal elasticity: an isogeometric approach. Appl. Phys. A 123, 330 (2017)CrossRef Norouzzadeh, A., Ansari, R., Rouhi, H.: Pre-buckling responses of Timoshenko nanobeams based on the integral and differential models of nonlocal elasticity: an isogeometric approach. Appl. Phys. A 123, 330 (2017)CrossRef
35.
go back to reference Zhu, X., Li, L.: Twisting statics of functionally graded nanotubes using Eringen’s nonlocal integral model. Compos. Struct. 78, 87–96 (2017)CrossRef Zhu, X., Li, L.: Twisting statics of functionally graded nanotubes using Eringen’s nonlocal integral model. Compos. Struct. 78, 87–96 (2017)CrossRef
36.
go back to reference Koutsoumaris, C.Chr., Eptaimeros, K.G., Tsamasphyros, G.J.: A different approach to Eringen’s nonlocal integral stress model with applications for beams. Int. J. Solids Struct. 112, 222–238 (2017)CrossRef Koutsoumaris, C.Chr., Eptaimeros, K.G., Tsamasphyros, G.J.: A different approach to Eringen’s nonlocal integral stress model with applications for beams. Int. J. Solids Struct. 112, 222–238 (2017)CrossRef
37.
38.
go back to reference Shaat, M., Abdelkefi, A.: New insights on the applicability of Eringen’s nonlocal theory. Int. J. Mech. Sci. 121, 67–75 (2017)CrossRef Shaat, M., Abdelkefi, A.: New insights on the applicability of Eringen’s nonlocal theory. Int. J. Mech. Sci. 121, 67–75 (2017)CrossRef
39.
go back to reference Shaat, M.: A general nonlocal theory and its approximations for slowly varying acoustic waves. Int. J. Mech. Sci. 130, 52–63 (2017)CrossRef Shaat, M.: A general nonlocal theory and its approximations for slowly varying acoustic waves. Int. J. Mech. Sci. 130, 52–63 (2017)CrossRef
40.
go back to reference Romano, G., Barretta, R., Diaco, M.: Constitutive boundary conditions and paradoxes in nonlocal elastic nano-beams. Int. J. Mech. Sci. 121, 151–156 (2017)CrossRef Romano, G., Barretta, R., Diaco, M.: Constitutive boundary conditions and paradoxes in nonlocal elastic nano-beams. Int. J. Mech. Sci. 121, 151–156 (2017)CrossRef
41.
go back to reference Peddieson, J., Buchanan, G.R., McNitt, R.P.: Application of nonlocal continuum models to nanotechnology. Int. J. Eng. Sci. 41, 305–312 (2003)CrossRef Peddieson, J., Buchanan, G.R., McNitt, R.P.: Application of nonlocal continuum models to nanotechnology. Int. J. Eng. Sci. 41, 305–312 (2003)CrossRef
42.
go back to reference Romano, G., Barretta, R.: Nonlocal elasticity in nanobeams: the stress-driven integral model. Int. J. Eng. Sci. 115, 14–27 (2017)MathSciNetCrossRef Romano, G., Barretta, R.: Nonlocal elasticity in nanobeams: the stress-driven integral model. Int. J. Eng. Sci. 115, 14–27 (2017)MathSciNetCrossRef
43.
go back to reference Romano, G., Barretta, R.: Stress-driven versus strain-driven nonlocal integral model for elastic nano-beams. Compos. Part B 114, 184–188 (2017)CrossRef Romano, G., Barretta, R.: Stress-driven versus strain-driven nonlocal integral model for elastic nano-beams. Compos. Part B 114, 184–188 (2017)CrossRef
44.
go back to reference Romano, G., Barretta, R., Diaco, M.: On nonlocal integral models for elastic nano-beams. Int. J. Mech. Sci. 131–132, 490–499 (2017)CrossRef Romano, G., Barretta, R., Diaco, M.: On nonlocal integral models for elastic nano-beams. Int. J. Mech. Sci. 131–132, 490–499 (2017)CrossRef
45.
go back to reference Barretta, R., Feo, L., Luciano, R., Marotti de Sciarra, F., Penna, R.: Nano-beams under torsion: a stress-driven nonlocal approach. PSU Res. Rev. 1, 164–169 (2017)CrossRef Barretta, R., Feo, L., Luciano, R., Marotti de Sciarra, F., Penna, R.: Nano-beams under torsion: a stress-driven nonlocal approach. PSU Res. Rev. 1, 164–169 (2017)CrossRef
46.
go back to reference Apuzzo, A., Barretta, R., Luciano, R., et al.: Free vibrations of Bernoulli-Euler nano-beams by the stress-driven nonlocal integral model. Compos. Part B Eng. 123, 105–111 (2017)CrossRef Apuzzo, A., Barretta, R., Luciano, R., et al.: Free vibrations of Bernoulli-Euler nano-beams by the stress-driven nonlocal integral model. Compos. Part B Eng. 123, 105–111 (2017)CrossRef
Metadata
Title
Bending of Euler–Bernoulli nanobeams based on the strain-driven and stress-driven nonlocal integral models: a numerical approach
Authors
M. Faraji Oskouie
R. Ansari
H. Rouhi
Publication date
02-04-2018
Publisher
The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences
Published in
Acta Mechanica Sinica / Issue 5/2018
Print ISSN: 0567-7718
Electronic ISSN: 1614-3116
DOI
https://doi.org/10.1007/s10409-018-0757-0

Other articles of this Issue 5/2018

Acta Mechanica Sinica 5/2018 Go to the issue

Premium Partners