Skip to main content
Top

2021 | OriginalPaper | Chapter

Bernstein Polynomial Collocation Method for Acceleration Motion of a Vertically Falling Non-spherical Particle

Authors : Sudhir Singh, K. Murugesan

Published in: Advances in Fluid Dynamics

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This work deals with the falling of non-spherical particle in incompressible Newtonian media. The Bernstein polynomial collocation method (BPCM) is used to find out velocity and acceleration, and obtained results by BPCM are compared with variational iteration method (VIM), differential transform method (DTM), and the fourth-order Runge–Kutta method (RK-4). It is shown that this method gives a more accurate result when compared to the differential transform method, and the solution converges fast in comparison with VIM. Moreover, the use of BPCM is found to be simple, flexible, efficient, and computationally elegant.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Clift R, Grace J, Weber ME (1978) Bubbles, drops and particles. Academic, New York Clift R, Grace J, Weber ME (1978) Bubbles, drops and particles. Academic, New York
2.
go back to reference Chhabra RP (1993) Bubbles, drops and particles in non-Newtonian fluids. CRC Press, Boca Raton Chhabra RP (1993) Bubbles, drops and particles in non-Newtonian fluids. CRC Press, Boca Raton
3.
go back to reference Tang P, Chan HK, Rapper JA (2004) Prediction of aerodynamic diameter of particles with rough surfaces. Powder Technol 147:64–78CrossRef Tang P, Chan HK, Rapper JA (2004) Prediction of aerodynamic diameter of particles with rough surfaces. Powder Technol 147:64–78CrossRef
4.
go back to reference Yow HN, Pitt MJ, Salman AD (2005) Drag correlation for particles of regular shape. Adv Powder Technol 363–372 Yow HN, Pitt MJ, Salman AD (2005) Drag correlation for particles of regular shape. Adv Powder Technol 363–372
5.
go back to reference Hatami M, Ganji DD (2014) Motion of a spherical particle on a rotating parabola using Lagrangian and high accuracy multi-step differential transformation method. Powder Technol 258:94–98CrossRef Hatami M, Ganji DD (2014) Motion of a spherical particle on a rotating parabola using Lagrangian and high accuracy multi-step differential transformation method. Powder Technol 258:94–98CrossRef
6.
go back to reference Hatami M, Domairry G (2014) Transient vertically motion of a soluble particle in a Newtonian fluid media. Powder Technol 253:96–105 Hatami M, Domairry G (2014) Transient vertically motion of a soluble particle in a Newtonian fluid media. Powder Technol 253:96–105
7.
go back to reference Jalaal M et al (2011) Homotopy perturbation method for motion of a spherical solid particle in plane Couette fluid flow. Comput Math Appl 61:2267–2270MathSciNetCrossRef Jalaal M et al (2011) Homotopy perturbation method for motion of a spherical solid particle in plane Couette fluid flow. Comput Math Appl 61:2267–2270MathSciNetCrossRef
8.
go back to reference Jalaal M, Ganji DD, Ahmadi G (2012) An analytical study of settling of non-spherical particles. Asia Pac J Chem Eng 7:63–72CrossRef Jalaal M, Ganji DD, Ahmadi G (2012) An analytical study of settling of non-spherical particles. Asia Pac J Chem Eng 7:63–72CrossRef
9.
go back to reference Jalaal M, Bararnia H, Domairry G (2011) A series exact solution for one-dimensional non-linear particle equation of motion. Powder Technol 207:461–464CrossRef Jalaal M, Bararnia H, Domairry G (2011) A series exact solution for one-dimensional non-linear particle equation of motion. Powder Technol 207:461–464CrossRef
10.
go back to reference Ferreira JM, Duarte Naia M, Chhabra RP (1998) An analytical study of the transient motion of a dense rigid sphere in an incompressible Newtonian fluid. Chem Eng Commun 1:168 Ferreira JM, Duarte Naia M, Chhabra RP (1998) An analytical study of the transient motion of a dense rigid sphere in an incompressible Newtonian fluid. Chem Eng Commun 1:168
11.
go back to reference Ferreira JM, Chhabra RP (1998) Acceleration motion of a vertically falling sphere in incompressible Newtonian media: an analytical solution. J Powder Technol 97:6–15CrossRef Ferreira JM, Chhabra RP (1998) Acceleration motion of a vertically falling sphere in incompressible Newtonian media: an analytical solution. J Powder Technol 97:6–15CrossRef
12.
go back to reference Dogonchi AS, Hatami M Hosseinzadeh Kh, Domairry G (2015) Non-spherical particles sedimentation in an incompressible Newtonian medium by Pade’ approximation. Powder Technol 278:248–256 Dogonchi AS, Hatami M Hosseinzadeh Kh, Domairry G (2015) Non-spherical particles sedimentation in an incompressible Newtonian medium by Pade’ approximation. Powder Technol 278:248–256
13.
go back to reference Torabi M, Yaghoobi H (2013) Accurate solution for acceleration motion of a vertically falling spherical particle in incompressible Newtonian media. Powder Technol 91:376–381 Torabi M, Yaghoobi H (2013) Accurate solution for acceleration motion of a vertically falling spherical particle in incompressible Newtonian media. Powder Technol 91:376–381
14.
go back to reference Malvandi A, Moshizi SA, Ganji DD (2014) An analytical study of unsteady motion of vertically falling spherical particles in quiescent power-law shear-thinning fluids. J Mol Liq 193:166–173CrossRef Malvandi A, Moshizi SA, Ganji DD (2014) An analytical study of unsteady motion of vertically falling spherical particles in quiescent power-law shear-thinning fluids. J Mol Liq 193:166–173CrossRef
15.
go back to reference Yaghoobi H, Torabi M (2012) Novel solution for acceleration motion of a vertically falling non-spherical particle by VIM-Pade’ approximant. Powder Technol 215–216:206–209 Yaghoobi H, Torabi M (2012) Novel solution for acceleration motion of a vertically falling non-spherical particle by VIM-Pade’ approximant. Powder Technol 215–216:206–209
16.
go back to reference Torabi M, Yaghoobi H (2011) Novel solution for acceleration motion of a vertically falling spherical particle by HPM-Pade’ approximant. Adv Powder Technol 22:674–677 Torabi M, Yaghoobi H (2011) Novel solution for acceleration motion of a vertically falling spherical particle by HPM-Pade’ approximant. Adv Powder Technol 22:674–677
17.
go back to reference Khan AR, Richardson JF (1987) The resistance to motion of a solid sphere in a fluid. Chem Eng Commun 62:135–150CrossRef Khan AR, Richardson JF (1987) The resistance to motion of a solid sphere in a fluid. Chem Eng Commun 62:135–150CrossRef
18.
go back to reference Bagheri G, Bonadonna C (2016) On the drag of freely falling non-spherical particles. Powder Technol 301:526–544 Bagheri G, Bonadonna C (2016) On the drag of freely falling non-spherical particles. Powder Technol 301:526–544
19.
go back to reference Krueger B, Wirtz S, Scherer V (2015) Measurement of drag coefficients of non-spherical particles with a camera-based method. Powder Technol 278:157–170CrossRef Krueger B, Wirtz S, Scherer V (2015) Measurement of drag coefficients of non-spherical particles with a camera-based method. Powder Technol 278:157–170CrossRef
20.
go back to reference Chein SF (1994) Settling velocity of irregularly shaped particles. SPE Drill Complet 9:281–289CrossRef Chein SF (1994) Settling velocity of irregularly shaped particles. SPE Drill Complet 9:281–289CrossRef
21.
go back to reference Song X, Xu Z, Li G (2017) A new model for predicting drag coefficient and settling velocity of spherical and non-spherical particles in Newtonian fluid. Powder Technol 321:242–250 Song X, Xu Z, Li G (2017) A new model for predicting drag coefficient and settling velocity of spherical and non-spherical particles in Newtonian fluid. Powder Technol 321:242–250
22.
go back to reference Hoshek J, Lasser D (1993) The fundamental of computer added geometric design. A. K. Peters, Wellesley Hoshek J, Lasser D (1993) The fundamental of computer added geometric design. A. K. Peters, Wellesley
23.
go back to reference Farouki RT (2012) The Bernstein polynomial basis: a centennial retrospective. Comput Aided Geom Des 29:379–419 Farouki RT (2012) The Bernstein polynomial basis: a centennial retrospective. Comput Aided Geom Des 29:379–419
24.
go back to reference Basirat B, Shahdadi MA (2013) Numerical solution of nonlinear integro-differential equations with initial conditions by Bernstein operational matrix of derivatives. Int J Mod Nonlinear Theory Appl 2:141–149CrossRef Basirat B, Shahdadi MA (2013) Numerical solution of nonlinear integro-differential equations with initial conditions by Bernstein operational matrix of derivatives. Int J Mod Nonlinear Theory Appl 2:141–149CrossRef
25.
go back to reference Ordokhani Y, Far SD (2013) Application of the Bernstein polynomials for solving the nonlinear Fredholm integro-differential equations. J Appl Math Bionform 1(2):13–31MATH Ordokhani Y, Far SD (2013) Application of the Bernstein polynomials for solving the nonlinear Fredholm integro-differential equations. J Appl Math Bionform 1(2):13–31MATH
26.
go back to reference Tabrizidooz HR, Shabanpanah K (2018) Bernstein polynomial basis for numerical solution of boundary value problems. Numer Algorithms 77:211–228MathSciNetCrossRef Tabrizidooz HR, Shabanpanah K (2018) Bernstein polynomial basis for numerical solution of boundary value problems. Numer Algorithms 77:211–228MathSciNetCrossRef
27.
go back to reference Mittal RC, Rohila R (2017) A study of one-dimensional nonlinear diffusion equation by Bernstein polynomial based differential quadrature method. J Math Chem 55:673–695MathSciNetCrossRef Mittal RC, Rohila R (2017) A study of one-dimensional nonlinear diffusion equation by Bernstein polynomial based differential quadrature method. J Math Chem 55:673–695MathSciNetCrossRef
28.
go back to reference Sahu PK, Saha Ray S (2016) Legendre spectral collocation method for the solution of the model describing biological species living together. J Comput Appl Math 296:47–55MathSciNetCrossRef Sahu PK, Saha Ray S (2016) Legendre spectral collocation method for the solution of the model describing biological species living together. J Comput Appl Math 296:47–55MathSciNetCrossRef
29.
go back to reference Hosseini E, Loghmani GB, Heydari M, Rashidi MM (2017) Investigation of magneto-hemodynamic flow in a semi-porous channel using orthonormal Bernstein polynomials. Eur Phys J Plus 132:326 Hosseini E, Loghmani GB, Heydari M, Rashidi MM (2017) Investigation of magneto-hemodynamic flow in a semi-porous channel using orthonormal Bernstein polynomials. Eur Phys J Plus 132:326
30.
go back to reference Khataybeh SN, Hasim I, Alshbool M (2018) Solving directly third-order ODEs using operational matrices of Bernstein polynomials methods with application to fluid flow equations. J King Saud Univ-Sci Khataybeh SN, Hasim I, Alshbool M (2018) Solving directly third-order ODEs using operational matrices of Bernstein polynomials methods with application to fluid flow equations. J King Saud Univ-Sci
31.
go back to reference Yousefi SA, Barikbin Z, Dehghan M (2012) Ritz-Galerkin method with Bernstein polynomial basis for finding the product solution form of heat equation with non-classic boundary conditions. Int J Numer Methods Heat Fluid Flow 22:39–48 Yousefi SA, Barikbin Z, Dehghan M (2012) Ritz-Galerkin method with Bernstein polynomial basis for finding the product solution form of heat equation with non-classic boundary conditions. Int J Numer Methods Heat Fluid Flow 22:39–48
32.
go back to reference Yaghoobi H, Torabi M (2011) An application of differential transformation method to nonlinear equations arising in heat transfer. Int Commun Heat Mass Transf 38:815–820 Yaghoobi H, Torabi M (2011) An application of differential transformation method to nonlinear equations arising in heat transfer. Int Commun Heat Mass Transf 38:815–820
33.
go back to reference Moghimi SM, Ganji DD, Bararnia H, Hosseini M, Jalaal M (2011) Homotopy perturbation method for nonlinear MHD Jeffery-Hamel problem. Comput Math Appl 61:2213–2216MathSciNetCrossRef Moghimi SM, Ganji DD, Bararnia H, Hosseini M, Jalaal M (2011) Homotopy perturbation method for nonlinear MHD Jeffery-Hamel problem. Comput Math Appl 61:2213–2216MathSciNetCrossRef
34.
go back to reference Noor MA, Mohyud-Din ST (2009) Variational iteration method for unsteady flow of gas through a porous medium using He’s polynomials and Pade approximants. Comput Math Appl 58:2182–2189MathSciNetCrossRef Noor MA, Mohyud-Din ST (2009) Variational iteration method for unsteady flow of gas through a porous medium using He’s polynomials and Pade approximants. Comput Math Appl 58:2182–2189MathSciNetCrossRef
Metadata
Title
Bernstein Polynomial Collocation Method for Acceleration Motion of a Vertically Falling Non-spherical Particle
Authors
Sudhir Singh
K. Murugesan
Copyright Year
2021
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-4308-1_53

Premium Partners