Skip to main content

2021 | OriginalPaper | Buchkapitel

Bernstein Polynomial Collocation Method for Acceleration Motion of a Vertically Falling Non-spherical Particle

verfasst von : Sudhir Singh, K. Murugesan

Erschienen in: Advances in Fluid Dynamics

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This work deals with the falling of non-spherical particle in incompressible Newtonian media. The Bernstein polynomial collocation method (BPCM) is used to find out velocity and acceleration, and obtained results by BPCM are compared with variational iteration method (VIM), differential transform method (DTM), and the fourth-order Runge–Kutta method (RK-4). It is shown that this method gives a more accurate result when compared to the differential transform method, and the solution converges fast in comparison with VIM. Moreover, the use of BPCM is found to be simple, flexible, efficient, and computationally elegant.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Clift R, Grace J, Weber ME (1978) Bubbles, drops and particles. Academic, New York Clift R, Grace J, Weber ME (1978) Bubbles, drops and particles. Academic, New York
2.
Zurück zum Zitat Chhabra RP (1993) Bubbles, drops and particles in non-Newtonian fluids. CRC Press, Boca Raton Chhabra RP (1993) Bubbles, drops and particles in non-Newtonian fluids. CRC Press, Boca Raton
3.
Zurück zum Zitat Tang P, Chan HK, Rapper JA (2004) Prediction of aerodynamic diameter of particles with rough surfaces. Powder Technol 147:64–78CrossRef Tang P, Chan HK, Rapper JA (2004) Prediction of aerodynamic diameter of particles with rough surfaces. Powder Technol 147:64–78CrossRef
4.
Zurück zum Zitat Yow HN, Pitt MJ, Salman AD (2005) Drag correlation for particles of regular shape. Adv Powder Technol 363–372 Yow HN, Pitt MJ, Salman AD (2005) Drag correlation for particles of regular shape. Adv Powder Technol 363–372
5.
Zurück zum Zitat Hatami M, Ganji DD (2014) Motion of a spherical particle on a rotating parabola using Lagrangian and high accuracy multi-step differential transformation method. Powder Technol 258:94–98CrossRef Hatami M, Ganji DD (2014) Motion of a spherical particle on a rotating parabola using Lagrangian and high accuracy multi-step differential transformation method. Powder Technol 258:94–98CrossRef
6.
Zurück zum Zitat Hatami M, Domairry G (2014) Transient vertically motion of a soluble particle in a Newtonian fluid media. Powder Technol 253:96–105 Hatami M, Domairry G (2014) Transient vertically motion of a soluble particle in a Newtonian fluid media. Powder Technol 253:96–105
7.
Zurück zum Zitat Jalaal M et al (2011) Homotopy perturbation method for motion of a spherical solid particle in plane Couette fluid flow. Comput Math Appl 61:2267–2270MathSciNetCrossRef Jalaal M et al (2011) Homotopy perturbation method for motion of a spherical solid particle in plane Couette fluid flow. Comput Math Appl 61:2267–2270MathSciNetCrossRef
8.
Zurück zum Zitat Jalaal M, Ganji DD, Ahmadi G (2012) An analytical study of settling of non-spherical particles. Asia Pac J Chem Eng 7:63–72CrossRef Jalaal M, Ganji DD, Ahmadi G (2012) An analytical study of settling of non-spherical particles. Asia Pac J Chem Eng 7:63–72CrossRef
9.
Zurück zum Zitat Jalaal M, Bararnia H, Domairry G (2011) A series exact solution for one-dimensional non-linear particle equation of motion. Powder Technol 207:461–464CrossRef Jalaal M, Bararnia H, Domairry G (2011) A series exact solution for one-dimensional non-linear particle equation of motion. Powder Technol 207:461–464CrossRef
10.
Zurück zum Zitat Ferreira JM, Duarte Naia M, Chhabra RP (1998) An analytical study of the transient motion of a dense rigid sphere in an incompressible Newtonian fluid. Chem Eng Commun 1:168 Ferreira JM, Duarte Naia M, Chhabra RP (1998) An analytical study of the transient motion of a dense rigid sphere in an incompressible Newtonian fluid. Chem Eng Commun 1:168
11.
Zurück zum Zitat Ferreira JM, Chhabra RP (1998) Acceleration motion of a vertically falling sphere in incompressible Newtonian media: an analytical solution. J Powder Technol 97:6–15CrossRef Ferreira JM, Chhabra RP (1998) Acceleration motion of a vertically falling sphere in incompressible Newtonian media: an analytical solution. J Powder Technol 97:6–15CrossRef
12.
Zurück zum Zitat Dogonchi AS, Hatami M Hosseinzadeh Kh, Domairry G (2015) Non-spherical particles sedimentation in an incompressible Newtonian medium by Pade’ approximation. Powder Technol 278:248–256 Dogonchi AS, Hatami M Hosseinzadeh Kh, Domairry G (2015) Non-spherical particles sedimentation in an incompressible Newtonian medium by Pade’ approximation. Powder Technol 278:248–256
13.
Zurück zum Zitat Torabi M, Yaghoobi H (2013) Accurate solution for acceleration motion of a vertically falling spherical particle in incompressible Newtonian media. Powder Technol 91:376–381 Torabi M, Yaghoobi H (2013) Accurate solution for acceleration motion of a vertically falling spherical particle in incompressible Newtonian media. Powder Technol 91:376–381
14.
Zurück zum Zitat Malvandi A, Moshizi SA, Ganji DD (2014) An analytical study of unsteady motion of vertically falling spherical particles in quiescent power-law shear-thinning fluids. J Mol Liq 193:166–173CrossRef Malvandi A, Moshizi SA, Ganji DD (2014) An analytical study of unsteady motion of vertically falling spherical particles in quiescent power-law shear-thinning fluids. J Mol Liq 193:166–173CrossRef
15.
Zurück zum Zitat Yaghoobi H, Torabi M (2012) Novel solution for acceleration motion of a vertically falling non-spherical particle by VIM-Pade’ approximant. Powder Technol 215–216:206–209 Yaghoobi H, Torabi M (2012) Novel solution for acceleration motion of a vertically falling non-spherical particle by VIM-Pade’ approximant. Powder Technol 215–216:206–209
16.
Zurück zum Zitat Torabi M, Yaghoobi H (2011) Novel solution for acceleration motion of a vertically falling spherical particle by HPM-Pade’ approximant. Adv Powder Technol 22:674–677 Torabi M, Yaghoobi H (2011) Novel solution for acceleration motion of a vertically falling spherical particle by HPM-Pade’ approximant. Adv Powder Technol 22:674–677
17.
Zurück zum Zitat Khan AR, Richardson JF (1987) The resistance to motion of a solid sphere in a fluid. Chem Eng Commun 62:135–150CrossRef Khan AR, Richardson JF (1987) The resistance to motion of a solid sphere in a fluid. Chem Eng Commun 62:135–150CrossRef
18.
Zurück zum Zitat Bagheri G, Bonadonna C (2016) On the drag of freely falling non-spherical particles. Powder Technol 301:526–544 Bagheri G, Bonadonna C (2016) On the drag of freely falling non-spherical particles. Powder Technol 301:526–544
19.
Zurück zum Zitat Krueger B, Wirtz S, Scherer V (2015) Measurement of drag coefficients of non-spherical particles with a camera-based method. Powder Technol 278:157–170CrossRef Krueger B, Wirtz S, Scherer V (2015) Measurement of drag coefficients of non-spherical particles with a camera-based method. Powder Technol 278:157–170CrossRef
20.
Zurück zum Zitat Chein SF (1994) Settling velocity of irregularly shaped particles. SPE Drill Complet 9:281–289CrossRef Chein SF (1994) Settling velocity of irregularly shaped particles. SPE Drill Complet 9:281–289CrossRef
21.
Zurück zum Zitat Song X, Xu Z, Li G (2017) A new model for predicting drag coefficient and settling velocity of spherical and non-spherical particles in Newtonian fluid. Powder Technol 321:242–250 Song X, Xu Z, Li G (2017) A new model for predicting drag coefficient and settling velocity of spherical and non-spherical particles in Newtonian fluid. Powder Technol 321:242–250
22.
Zurück zum Zitat Hoshek J, Lasser D (1993) The fundamental of computer added geometric design. A. K. Peters, Wellesley Hoshek J, Lasser D (1993) The fundamental of computer added geometric design. A. K. Peters, Wellesley
23.
Zurück zum Zitat Farouki RT (2012) The Bernstein polynomial basis: a centennial retrospective. Comput Aided Geom Des 29:379–419 Farouki RT (2012) The Bernstein polynomial basis: a centennial retrospective. Comput Aided Geom Des 29:379–419
24.
Zurück zum Zitat Basirat B, Shahdadi MA (2013) Numerical solution of nonlinear integro-differential equations with initial conditions by Bernstein operational matrix of derivatives. Int J Mod Nonlinear Theory Appl 2:141–149CrossRef Basirat B, Shahdadi MA (2013) Numerical solution of nonlinear integro-differential equations with initial conditions by Bernstein operational matrix of derivatives. Int J Mod Nonlinear Theory Appl 2:141–149CrossRef
25.
Zurück zum Zitat Ordokhani Y, Far SD (2013) Application of the Bernstein polynomials for solving the nonlinear Fredholm integro-differential equations. J Appl Math Bionform 1(2):13–31MATH Ordokhani Y, Far SD (2013) Application of the Bernstein polynomials for solving the nonlinear Fredholm integro-differential equations. J Appl Math Bionform 1(2):13–31MATH
26.
Zurück zum Zitat Tabrizidooz HR, Shabanpanah K (2018) Bernstein polynomial basis for numerical solution of boundary value problems. Numer Algorithms 77:211–228MathSciNetCrossRef Tabrizidooz HR, Shabanpanah K (2018) Bernstein polynomial basis for numerical solution of boundary value problems. Numer Algorithms 77:211–228MathSciNetCrossRef
27.
Zurück zum Zitat Mittal RC, Rohila R (2017) A study of one-dimensional nonlinear diffusion equation by Bernstein polynomial based differential quadrature method. J Math Chem 55:673–695MathSciNetCrossRef Mittal RC, Rohila R (2017) A study of one-dimensional nonlinear diffusion equation by Bernstein polynomial based differential quadrature method. J Math Chem 55:673–695MathSciNetCrossRef
28.
Zurück zum Zitat Sahu PK, Saha Ray S (2016) Legendre spectral collocation method for the solution of the model describing biological species living together. J Comput Appl Math 296:47–55MathSciNetCrossRef Sahu PK, Saha Ray S (2016) Legendre spectral collocation method for the solution of the model describing biological species living together. J Comput Appl Math 296:47–55MathSciNetCrossRef
29.
Zurück zum Zitat Hosseini E, Loghmani GB, Heydari M, Rashidi MM (2017) Investigation of magneto-hemodynamic flow in a semi-porous channel using orthonormal Bernstein polynomials. Eur Phys J Plus 132:326 Hosseini E, Loghmani GB, Heydari M, Rashidi MM (2017) Investigation of magneto-hemodynamic flow in a semi-porous channel using orthonormal Bernstein polynomials. Eur Phys J Plus 132:326
30.
Zurück zum Zitat Khataybeh SN, Hasim I, Alshbool M (2018) Solving directly third-order ODEs using operational matrices of Bernstein polynomials methods with application to fluid flow equations. J King Saud Univ-Sci Khataybeh SN, Hasim I, Alshbool M (2018) Solving directly third-order ODEs using operational matrices of Bernstein polynomials methods with application to fluid flow equations. J King Saud Univ-Sci
31.
Zurück zum Zitat Yousefi SA, Barikbin Z, Dehghan M (2012) Ritz-Galerkin method with Bernstein polynomial basis for finding the product solution form of heat equation with non-classic boundary conditions. Int J Numer Methods Heat Fluid Flow 22:39–48 Yousefi SA, Barikbin Z, Dehghan M (2012) Ritz-Galerkin method with Bernstein polynomial basis for finding the product solution form of heat equation with non-classic boundary conditions. Int J Numer Methods Heat Fluid Flow 22:39–48
32.
Zurück zum Zitat Yaghoobi H, Torabi M (2011) An application of differential transformation method to nonlinear equations arising in heat transfer. Int Commun Heat Mass Transf 38:815–820 Yaghoobi H, Torabi M (2011) An application of differential transformation method to nonlinear equations arising in heat transfer. Int Commun Heat Mass Transf 38:815–820
33.
Zurück zum Zitat Moghimi SM, Ganji DD, Bararnia H, Hosseini M, Jalaal M (2011) Homotopy perturbation method for nonlinear MHD Jeffery-Hamel problem. Comput Math Appl 61:2213–2216MathSciNetCrossRef Moghimi SM, Ganji DD, Bararnia H, Hosseini M, Jalaal M (2011) Homotopy perturbation method for nonlinear MHD Jeffery-Hamel problem. Comput Math Appl 61:2213–2216MathSciNetCrossRef
34.
Zurück zum Zitat Noor MA, Mohyud-Din ST (2009) Variational iteration method for unsteady flow of gas through a porous medium using He’s polynomials and Pade approximants. Comput Math Appl 58:2182–2189MathSciNetCrossRef Noor MA, Mohyud-Din ST (2009) Variational iteration method for unsteady flow of gas through a porous medium using He’s polynomials and Pade approximants. Comput Math Appl 58:2182–2189MathSciNetCrossRef
Metadaten
Titel
Bernstein Polynomial Collocation Method for Acceleration Motion of a Vertically Falling Non-spherical Particle
verfasst von
Sudhir Singh
K. Murugesan
Copyright-Jahr
2021
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-4308-1_53

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.