Skip to main content
Top

2019 | OriginalPaper | Chapter

6. Best Practices of the CFD Trade

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A strong attempt is made to provide practical guidelines for CFD meshes. Dozens of mesh metrics are described in detail, and a mathematically-driven, physics-based set of “golden” mesh metrics is recommended. General CFD boundary and initial conditions are described, including boundary compatibility. Time step, stability, domain, and calculation speed-up guidelines are provided. Detailed guidelines for modeling laminar and turbulent natural circulation are discussed. The chapter concludes with dozens of data visualization recommendations for generating figures, movies, and other presentation media, with the goal of more effectively conveying the CFD results.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Anderson, D. A., Tannehill, J. C., & Pletcher, R. H. (1984). Computational fluid mechanics and heat transfer. New York: Hemisphere Publishing Corporation.MATH Anderson, D. A., Tannehill, J. C., & Pletcher, R. H. (1984). Computational fluid mechanics and heat transfer. New York: Hemisphere Publishing Corporation.MATH
go back to reference Andersson, B., et al. (2012). Computational fluid dynamic for engineers. Cambridge University Press. Andersson, B., et al. (2012). Computational fluid dynamic for engineers. Cambridge University Press.
go back to reference Blasius, H. (1908). Grenzschichten in Flussigkeiten mit kleiner Reibung. Zeitschrift für Angewandte Mathematik und Physik, 56(1). Also available in English as, “The Boundary Layers in Fluids with Little Friction”, National Advisory Committee for Aeronautics, Technical Memorandum 1256, 1950. Blasius, H. (1908). Grenzschichten in Flussigkeiten mit kleiner Reibung. Zeitschrift für Angewandte Mathematik und Physik, 56(1). Also available in English as, “The Boundary Layers in Fluids with Little Friction”, National Advisory Committee for Aeronautics, Technical Memorandum 1256, 1950.
go back to reference Bna, S., et al. (2012, June). Heat transfer numerical simulations with the four parameter k-ω-kt-εt model for low-Prandtl Number liquid metals, XXX UIT Heat Transfer Conference, Bologna. Bna, S., et al. (2012, June). Heat transfer numerical simulations with the four parameter k-ω-ktt model for low-Prandtl Number liquid metals, XXX UIT Heat Transfer Conference, Bologna.
go back to reference Bolaños, S. J., & Vernescu, B. (2017). Derivation of the Navier slip and slip length for viscous flows over a rough boundary. Physics of Fluids, 29, 057103.CrossRef Bolaños, S. J., & Vernescu, B. (2017). Derivation of the Navier slip and slip length for viscous flows over a rough boundary. Physics of Fluids, 29, 057103.CrossRef
go back to reference Brewer, M. L., & Marcum, D. (2008). Proceedings of the 16th international meshing roundtable. Springer. Brewer, M. L., & Marcum, D. (2008). Proceedings of the 16th international meshing roundtable. Springer.
go back to reference Chen, F., et al. (2013). Investigation on the applicability of Turbulent-Prandtl-Number models for liquid Lead-Bismuth Eutectic. Nuclear Engineering and Design, 257, 128.CrossRef Chen, F., et al. (2013). Investigation on the applicability of Turbulent-Prandtl-Number models for liquid Lead-Bismuth Eutectic. Nuclear Engineering and Design, 257, 128.CrossRef
go back to reference Courant, R., Friedrichs, K., & Lewy, H. (1967, March). On the partial difference equations of mathematical physics. IBM Journal. (English version; the German version first appeared in Mathematische Annalen, Vol. 100, in 1928). Courant, R., Friedrichs, K., & Lewy, H. (1967, March). On the partial difference equations of mathematical physics. IBM Journal. (English version; the German version first appeared in Mathematische Annalen, Vol. 100, in 1928).
go back to reference DuChateau, & Zachmann. (2011). Partial differential equations (3rd ed.). New York: Schaum’s Outlines, McGraw-Hill. DuChateau, & Zachmann. (2011). Partial differential equations (3rd ed.). New York: Schaum’s Outlines, McGraw-Hill.
go back to reference Fernandez-Cosials, K., et al. (2017). Three-dimensional simulation of a LBLOCA in an AP1000 containment building. Energy Procedia, 127, 235–241.CrossRef Fernandez-Cosials, K., et al. (2017). Three-dimensional simulation of a LBLOCA in an AP1000 containment building. Energy Procedia, 127, 235–241.CrossRef
go back to reference FIDAP Version 8.52, Theory and user’s manual, Fluent, Inc., 1999. (FIDAP uses the FIMESH meshing software.) FIDAP Version 8.52, Theory and user’s manual, Fluent, Inc., 1999. (FIDAP uses the FIMESH meshing software.)
go back to reference Finn, J. R., & Dogan, O. N. (2019). Analyzing the potential for erosion in a supercritical CO2 turbine nozzle with large eddy simulation, Proceedings of the ASME Turbo Expo, GT2019-91791. Finn, J. R., & Dogan, O. N. (2019). Analyzing the potential for erosion in a supercritical CO2 turbine nozzle with large eddy simulation, Proceedings of the ASME Turbo Expo, GT2019-91791.
go back to reference Flownex. (2019, May 15). Transient simulations run 7 times faster in upcoming 2019 Flownex release, e-mail correspondence. Flownex. (2019, May 15). Transient simulations run 7 times faster in upcoming 2019 Flownex release, e-mail correspondence.
go back to reference Fluent. (2009). ANSYS FLUENT 12.0 user’s guide. Fluent. (2009). ANSYS FLUENT 12.0 user’s guide.
go back to reference Fluent. (2012). Best practice guidelines, Lecture 10, ANSYS. Fluent. (2012). Best practice guidelines, Lecture 10, ANSYS.
go back to reference Fuego (2016). SIERRA low Mach module: Fuego user manual – Version 4.40. Albuquerque: Sandia National Laboratories. Fuego (2016). SIERRA low Mach module: Fuego user manual – Version 4.40. Albuquerque: Sandia National Laboratories.
go back to reference Grunloh, T. (2019). Accelerate CFD high fidelity fluid dynamics in a fraction of the time. Illinois Rocstar. Grunloh, T. (2019). Accelerate CFD high fidelity fluid dynamics in a fraction of the time. Illinois Rocstar.
go back to reference Haberman, R. (2004). Applied partial differential equations with fourier series and boundary value problems (4th ed.). Upper Saddle River: Pearson Prentice Hall. Haberman, R. (2004). Applied partial differential equations with fourier series and boundary value problems (4th ed.). Upper Saddle River: Pearson Prentice Hall.
go back to reference Hanson, R. (2012). Aerodynamics. University of Toronto Institute for Aerospace Studies, AER307. Hanson, R. (2012). Aerodynamics. University of Toronto Institute for Aerospace Studies, AER307.
go back to reference Hasan, B. O. (2007). Turbulent Prandtl Number and its use in prediction of heat transfer coefficient for liquids. Nahrain University, College of Engineering Journal (NUCEJ), 10(1), 53.MathSciNet Hasan, B. O. (2007). Turbulent Prandtl Number and its use in prediction of heat transfer coefficient for liquids. Nahrain University, College of Engineering Journal (NUCEJ), 10(1), 53.MathSciNet
go back to reference Holman, J. (1990). Heat transfer (7th ed.). New York: McGraw-Hill. Holman, J. (1990). Heat transfer (7th ed.). New York: McGraw-Hill.
go back to reference Jischa, M., & Rieke, H. B. (1979). About the prediction of turbulent Prandtl and Schmidt Numbers from modeled transport equations. International Journal of Heat and Mass Transfer, 22, 1547.CrossRef Jischa, M., & Rieke, H. B. (1979). About the prediction of turbulent Prandtl and Schmidt Numbers from modeled transport equations. International Journal of Heat and Mass Transfer, 22, 1547.CrossRef
go back to reference Joshi, J., & Nayak, A. (2019). Fluid dynamics in nuclear reactor design and safety assessment (1st ed.). Duxford: Woodhead Publishing. Joshi, J., & Nayak, A. (2019). Fluid dynamics in nuclear reactor design and safety assessment (1st ed.). Duxford: Woodhead Publishing.
go back to reference Knupp, P. M. (2000). Achieving finite element mesh quality via optimization of the Jacobian matrix norm and associated quantities. International Journal for Numerical Methods in Engineering, 48, 1165.CrossRef Knupp, P. M. (2000). Achieving finite element mesh quality via optimization of the Jacobian matrix norm and associated quantities. International Journal for Numerical Methods in Engineering, 48, 1165.CrossRef
go back to reference Knupp, P. M. (2003). Algebraic mesh quality metrics for unstructured initial meshes. Finite Elements in Analysis and Design, 39, 217.CrossRef Knupp, P. M. (2003). Algebraic mesh quality metrics for unstructured initial meshes. Finite Elements in Analysis and Design, 39, 217.CrossRef
go back to reference Knupp, P. M. (2007). Remarks on mesh quality, 45th AIAA aerospace sciences meeting and exhibit. Also available as Sandia National Laboratories SAND2007-8128C. Knupp, P. M. (2007). Remarks on mesh quality, 45th AIAA aerospace sciences meeting and exhibit. Also available as Sandia National Laboratories SAND2007-8128C.
go back to reference Kreyzig, E. (1979). Advanced engineering mathematics (4th ed.). New York: Wiley. Kreyzig, E. (1979). Advanced engineering mathematics (4th ed.). New York: Wiley.
go back to reference Leonardi, S., & Castro, I. P. (2010). Channel flow over large cube roughness: A direct numerical simulation study. Journal of Fluid Mechanics, 651, 519. Leonardi, S., & Castro, I. P. (2010). Channel flow over large cube roughness: A direct numerical simulation study. Journal of Fluid Mechanics, 651, 519.
go back to reference Lin, M., Wang, Q. W., & Guo, Z. X. (2012). A simple method for predicting bulk temperature from tube wall temperature with uniform outside wall heat flux. International Communications in Heat and Mass Transfer, 39, 582.CrossRef Lin, M., Wang, Q. W., & Guo, Z. X. (2012). A simple method for predicting bulk temperature from tube wall temperature with uniform outside wall heat flux. International Communications in Heat and Mass Transfer, 39, 582.CrossRef
go back to reference Ly, H. V., & Tran, H. T. (2001). Modeling and control of physical processes using proper orthogonal decomposition. Mathematical and Computer Modelling, 33, 223.CrossRef Ly, H. V., & Tran, H. T. (2001). Modeling and control of physical processes using proper orthogonal decomposition. Mathematical and Computer Modelling, 33, 223.CrossRef
go back to reference Nordstrom, J., Nordin, N., & Henningson, D. (1999). The fringe region technique and the Fourier method used in the direct numerical simulation of spatially evolving viscous flows. SIAM, Journal of Scientific Computing, 20(4), 1365. Nordstrom, J., Nordin, N., & Henningson, D. (1999). The fringe region technique and the Fourier method used in the direct numerical simulation of spatially evolving viscous flows. SIAM, Journal of Scientific Computing, 20(4), 1365.
go back to reference Orszag, S. A., & Israeli, M. (1974). Numerical simulation of viscous incompressible flows. Annual Review of Fluid Mechanics, 6, 681.CrossRef Orszag, S. A., & Israeli, M. (1974). Numerical simulation of viscous incompressible flows. Annual Review of Fluid Mechanics, 6, 681.CrossRef
go back to reference Ostrach, S. (1953). An analysis of Laminar free-convection flow and heat transfer about a flat plate parallel to the direction of the generating body force, Report 1111, National Advisory Committee for Aeronautics, NASA. Ostrach, S. (1953). An analysis of Laminar free-convection flow and heat transfer about a flat plate parallel to the direction of the generating body force, Report 1111, National Advisory Committee for Aeronautics, NASA.
go back to reference Otero R. G. J., Patel, A., & Pecnik, R. (2018). A novel approach to accurately model heat transfer to supercritical fluids, The 6th international symposium – supercritical CO2 power cycles. Otero R. G. J., Patel, A., & Pecnik, R. (2018). A novel approach to accurately model heat transfer to supercritical fluids, The 6th international symposium – supercritical CO2 power cycles.
go back to reference Rempfer, D. (2006). On boundary conditions for incompressible Navier-Stokes problems. ASME Applied Mechanics Reviews, 59, 107.CrossRef Rempfer, D. (2006). On boundary conditions for incompressible Navier-Stokes problems. ASME Applied Mechanics Reviews, 59, 107.CrossRef
go back to reference Reynolds, O. (1883). An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the Law of Resistance in parallel channels. Philosophical Transactions of the Royal Society of London, 174. (Can also be obtained through JSTOR, http://www.jstor.org). Reynolds, O. (1883). An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the Law of Resistance in parallel channels. Philosophical Transactions of the Royal Society of London, 174. (Can also be obtained through JSTOR, http://​www.​jstor.​org).
go back to reference Robinson, J. (1987). CRE method of element testing and the Jacobian shape parameters. Engineering with Computers, 4, 113.CrossRef Robinson, J. (1987). CRE method of element testing and the Jacobian shape parameters. Engineering with Computers, 4, 113.CrossRef
go back to reference Rodi, W., et al. (1997). Status of the large eddy simulation: Results of a workshop. Transactions of the ASME, Journal of Fluids Engineering, 119, 248.CrossRef Rodi, W., et al. (1997). Status of the large eddy simulation: Results of a workshop. Transactions of the ASME, Journal of Fluids Engineering, 119, 248.CrossRef
go back to reference Rodriguez, S. (2011, May). Swirling Jets for the Mitigation of Hot Spots and Thermal Stratification in the VHTR Lower Plenum, PhD Diss., University of New Mexico. Rodriguez, S. (2011, May). Swirling Jets for the Mitigation of Hot Spots and Thermal Stratification in the VHTR Lower Plenum, PhD Diss., University of New Mexico.
go back to reference Rodriguez, S., & Ames, D. (2015, November). Design optimization for miniature nuclear reactors, American Nuclear Society, Winter Meeting. Rodriguez, S., & Ames, D. (2015, November). Design optimization for miniature nuclear reactors, American Nuclear Society, Winter Meeting.
go back to reference Rodriguez, S., & Turner, D. Z. (2012). Assessment of existing Sierra/Fuego capabilities related to Grid-To-Rod-Fretting (GTRF). Sandia National Laboratories, SAND2012-0530. Rodriguez, S., & Turner, D. Z. (2012). Assessment of existing Sierra/Fuego capabilities related to Grid-To-Rod-Fretting (GTRF). Sandia National Laboratories, SAND2012-0530.
go back to reference Rodriguez, S., & El-Genk, M. S. (2010). Cooling of an isothermal plate using a triangular array of swirling air jets. American Society of Mechanical Engineers, IHTC14-22170. Rodriguez, S., & El-Genk, M. S. (2010). Cooling of an isothermal plate using a triangular array of swirling air jets. American Society of Mechanical Engineers, IHTC14-22170.
go back to reference Sanders, M. S., & McCormick, E. J. (1987). Human factors in engineering and design (6th ed.). New York: McGraw-Hill Publishing Co. Sanders, M. S., & McCormick, E. J. (1987). Human factors in engineering and design (6th ed.). New York: McGraw-Hill Publishing Co.
go back to reference SDRC. (1988). I-DEAS user’s guide (Vol. 1 and 2). Structural Dynamics Research Corporation. SDRC. (1988). I-DEAS user’s guide (Vol. 1 and 2). Structural Dynamics Research Corporation.
go back to reference Spalart, P. R. (1990). Direct numerical study of crossflow instability, laminar-turbulent transition, IUTAM Symposium. Spalart, P. R. (1990). Direct numerical study of crossflow instability, laminar-turbulent transition, IUTAM Symposium.
go back to reference Stimpson, C. J., et al. (2007). The verdict geometric quality library. Sandia National Laboratories, SAND2007-1751. Stimpson, C. J., et al. (2007). The verdict geometric quality library. Sandia National Laboratories, SAND2007-1751.
go back to reference Strogatz, S. H. (1994). Nonlinear dynamics and chaos. Cambridge: Westview Press. Strogatz, S. H. (1994). Nonlinear dynamics and chaos. Cambridge: Westview Press.
go back to reference Tabeling, P. (2009). Introduction to microfluidics. Oxford: Oxford University Press. Tabeling, P. (2009). Introduction to microfluidics. Oxford: Oxford University Press.
go back to reference Thompson, K. W. (1987). Time dependent boundary conditions for hyperbolic systems. Journal of Computational Physics, 68, 1.MathSciNetCrossRef Thompson, K. W. (1987). Time dependent boundary conditions for hyperbolic systems. Journal of Computational Physics, 68, 1.MathSciNetCrossRef
go back to reference Tutar, M., & Holdo, A. E. (2001). Computational modeling of flow around a circular cylinder in sub-critical flow regime with various turbulence models. International Journal for Numerical Methods in Fluids, 35, 763.CrossRef Tutar, M., & Holdo, A. E. (2001). Computational modeling of flow around a circular cylinder in sub-critical flow regime with various turbulence models. International Journal for Numerical Methods in Fluids, 35, 763.CrossRef
go back to reference Wang, G. R., Yang, F., & Zhao, W. (2014). There can be turbulence in microfluidics at low Reynolds Number. Lab on a Chip, 14, 1452.CrossRef Wang, G. R., Yang, F., & Zhao, W. (2014). There can be turbulence in microfluidics at low Reynolds Number. Lab on a Chip, 14, 1452.CrossRef
go back to reference White, F. (1991). Viscous fluid flow (2nd ed.). New York: McGraw-Hill. White, F. (1991). Viscous fluid flow (2nd ed.). New York: McGraw-Hill.
go back to reference Wilcox, D. C. (2006). Turbulence modeling for CFD (3rd ed.)., printed on 2006 and 2010. Wilcox, D. C. (2006). Turbulence modeling for CFD (3rd ed.)., printed on 2006 and 2010.
go back to reference Willcox, K., & Peraire, J. (2002). Balanced model reduction via the proper orthogonal decomposition. AIAA Journal, 40(11), 2323.CrossRef Willcox, K., & Peraire, J. (2002). Balanced model reduction via the proper orthogonal decomposition. AIAA Journal, 40(11), 2323.CrossRef
go back to reference Yokomine, T., et al. (2007). Experimental investigation of turbulent heat transfer of high Prandtl number fluid flow under strong magnetic field. Fusion Science and Technology, 52, 625.CrossRef Yokomine, T., et al. (2007). Experimental investigation of turbulent heat transfer of high Prandtl number fluid flow under strong magnetic field. Fusion Science and Technology, 52, 625.CrossRef
go back to reference Zigh, G., & Solis, J. (2013). Computational fluid dynamics best practice guidelines for dry cask application. USNRC, NUREG-2152. Zigh, G., & Solis, J. (2013). Computational fluid dynamics best practice guidelines for dry cask application. USNRC, NUREG-2152.
Metadata
Title
Best Practices of the CFD Trade
Author
Sal Rodriguez
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-28691-0_6

Premium Partner