Skip to main content
Top

2019 | OriginalPaper | Chapter

5. LES and DNS Turbulence Modeling

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter is divided into two parts, LES and DNS. In the first part, the LES turbulence model is derived from first principles, and its terms are described in detail. The usage of LES filters is described, along with various recommendations. The LIKE algorithm is applied to show how to model large eddies properly by applying the appropriate node-to-node computational distances. LES-specific boundary and initial conditions are described, and dozens of practical recommendations are provided. In the second part, analogous discussions and recommendations for DNS are included as well.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Afgan, I. (2007, July). Large eddy simulation of flow over cylindrical bodies using unstructured finite volume meshes, PhD Diss., University of Manchester. Afgan, I. (2007, July). Large eddy simulation of flow over cylindrical bodies using unstructured finite volume meshes, PhD Diss., University of Manchester.
go back to reference Alfonsi, G. (2011). Direct numerical simulation of turbulent flows. ASME Applied Mechanics Reviews, 64, 020802.CrossRef Alfonsi, G. (2011). Direct numerical simulation of turbulent flows. ASME Applied Mechanics Reviews, 64, 020802.CrossRef
go back to reference Argyropoulos, C. D., & Markatos, N. C. (2015). Recent advances on the numerical modelling of turbulent flows. Applied Mathematical Modeling, 39, 693.MathSciNetMATHCrossRef Argyropoulos, C. D., & Markatos, N. C. (2015). Recent advances on the numerical modelling of turbulent flows. Applied Mathematical Modeling, 39, 693.MathSciNetMATHCrossRef
go back to reference Bonaldo, A. (2007). Experimental characterisation of Swirl stabilized annular stratified flames, PhD Diss., Cranfield University. Bonaldo, A. (2007). Experimental characterisation of Swirl stabilized annular stratified flames, PhD Diss., Cranfield University.
go back to reference Bouffanais, R. (2010). Advances and challenges of applied large-eddy simulation. Computers & Fluids, 39, 735.MATHCrossRef Bouffanais, R. (2010). Advances and challenges of applied large-eddy simulation. Computers & Fluids, 39, 735.MATHCrossRef
go back to reference Busch, H., Ryan, K., & Sheard, G. J. (2007, Dec 2–7). Strain-rate development between a co-rotating Lamb-Oseen Vortex pair of unequal strength, 16th Australasian fluid mechanics conference, Gold Coast, Australia. Busch, H., Ryan, K., & Sheard, G. J. (2007, Dec 2–7). Strain-rate development between a co-rotating Lamb-Oseen Vortex pair of unequal strength, 16th Australasian fluid mechanics conference, Gold Coast, Australia.
go back to reference Chu, X., et al. (2019). Direct numerical simulation of convective heat transfer in porous media. International Journal of Heat and Mass Transfer, 133, 11.CrossRef Chu, X., et al. (2019). Direct numerical simulation of convective heat transfer in porous media. International Journal of Heat and Mass Transfer, 133, 11.CrossRef
go back to reference Clark, R. A., Ferziger, J. H., & Reynolds, W. C. (1979). Evaluation of subgrid-scale models using an accurately simulated turbulent flow. Journal of Fluid Mechanics, 91(Part 1), 1.CrossRefMATH Clark, R. A., Ferziger, J. H., & Reynolds, W. C. (1979). Evaluation of subgrid-scale models using an accurately simulated turbulent flow. Journal of Fluid Mechanics, 91(Part 1), 1.CrossRefMATH
go back to reference Coleman, G. N., & Sandberg, R. D. (2010). A primer on direct numerical simulation of turbulence – Methods, procedures and guidelines. Aerodynamics & Flight Mechanics Research Group, University of Southampton. Coleman, G. N., & Sandberg, R. D. (2010). A primer on direct numerical simulation of turbulence – Methods, procedures and guidelines. Aerodynamics & Flight Mechanics Research Group, University of Southampton.
go back to reference Day, M., et al. (2009). Combined computational and experimental characterization of Lean premixed turbulent low Swirl laboratory flames. Lawrence Berkeley National Laboratories, circa. Day, M., et al. (2009). Combined computational and experimental characterization of Lean premixed turbulent low Swirl laboratory flames. Lawrence Berkeley National Laboratories, circa.
go back to reference Deardorff, J. W. (1970). A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers. Journal of Fluid Mechanics, 41(Part 2), 453.MATHCrossRef Deardorff, J. W. (1970). A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers. Journal of Fluid Mechanics, 41(Part 2), 453.MATHCrossRef
go back to reference Deardorff, J. W. (1971). On the magnitude of the subgrid scale eddy coefficient. Journal of Computational Physics, 7, 120.MATHCrossRef Deardorff, J. W. (1971). On the magnitude of the subgrid scale eddy coefficient. Journal of Computational Physics, 7, 120.MATHCrossRef
go back to reference Dong, S., & Karniadakis, G. E. (2005). DNS of flow past a stationary and oscillating cylinder at Re = 10000. Journal of Fluids and Structures, 20, 519.CrossRef Dong, S., & Karniadakis, G. E. (2005). DNS of flow past a stationary and oscillating cylinder at Re = 10000. Journal of Fluids and Structures, 20, 519.CrossRef
go back to reference Drikakis, D., & Geurts, B. J. (Eds.). (2002). Turbulent flow computation. Dordrecht: Kluwer Academic Publishers.MATH Drikakis, D., & Geurts, B. J. (Eds.). (2002). Turbulent flow computation. Dordrecht: Kluwer Academic Publishers.MATH
go back to reference Duraisamy, K., & Lele, S. K. (2006). DNS of temporal evolution of isolated vortices, Center for Turbulence Research, Proceedings of the Summer Program. Duraisamy, K., & Lele, S. K. (2006). DNS of temporal evolution of isolated vortices, Center for Turbulence Research, Proceedings of the Summer Program.
go back to reference Elghobashi. (2019). Direct numerical simulation of turbulent flows laden with droplets or bubbles. Annual Review of Fluid Mechanics, 51, 217.MathSciNetMATHCrossRef Elghobashi. (2019). Direct numerical simulation of turbulent flows laden with droplets or bubbles. Annual Review of Fluid Mechanics, 51, 217.MathSciNetMATHCrossRef
go back to reference Facciolo, L. (2006). A study on axially rotating pipe and swirling jet flows, Royal Institute of Technology, Department of Mechanics, S-100 44 Stockholm, Sweden, PhD Diss. Facciolo, L. (2006). A study on axially rotating pipe and swirling jet flows, Royal Institute of Technology, Department of Mechanics, S-100 44 Stockholm, Sweden, PhD Diss.
go back to reference Ferziger, J. H. (1977). Large eddy numerical simulations of turbulent flows. AIAA Journal, 15(9), 1261.MATHCrossRef Ferziger, J. H. (1977). Large eddy numerical simulations of turbulent flows. AIAA Journal, 15(9), 1261.MATHCrossRef
go back to reference Finn, J. R., & Dogan, O. N. (2019). Analyzing the potential for erosion in a supercritical CO2 turbine nozzle with large eddy simulation, Proc. of the ASME Turbo Expo, GT2019-91791. Finn, J. R., & Dogan, O. N. (2019). Analyzing the potential for erosion in a supercritical CO2 turbine nozzle with large eddy simulation, Proc. of the ASME Turbo Expo, GT2019-91791.
go back to reference Freitag, M., & Klein, M. (2005). Direct numerical simulation of a recirculating swirling flow. Flow, Turbulence and Combustion, 75, 51.MATHCrossRef Freitag, M., & Klein, M. (2005). Direct numerical simulation of a recirculating swirling flow. Flow, Turbulence and Combustion, 75, 51.MATHCrossRef
go back to reference Fuego. (2016a). SIERRA low Mach module: Fuego theory manual – Version 4.40. Sandia National Laboratories. Fuego. (2016a). SIERRA low Mach module: Fuego theory manual – Version 4.40. Sandia National Laboratories.
go back to reference Fuego. (2016b). SIERRA low Mach module: Fuego user manual – Version 4.40. Sandia National Laboratories. Fuego. (2016b). SIERRA low Mach module: Fuego user manual – Version 4.40. Sandia National Laboratories.
go back to reference Galperin, B., & Orszag, S. A. (Eds.). (1993). Large eddy simulation of complex engineering and geophysical flows. Cambridge, UK: Cambridge University Press. Galperin, B., & Orszag, S. A. (Eds.). (1993). Large eddy simulation of complex engineering and geophysical flows. Cambridge, UK: Cambridge University Press.
go back to reference Garnier, E., Adams, N., & Sagaut, P. (2009). Large eddy simulation for compressible flows. Netherlands: Springer. Garnier, E., Adams, N., & Sagaut, P. (2009). Large eddy simulation for compressible flows. Netherlands: Springer.
go back to reference Germano, M., et al. (1991). A dynamic subgrid scale eddy viscosity model. Physics of Fluids A, 3(7), 1760.MATHCrossRef Germano, M., et al. (1991). A dynamic subgrid scale eddy viscosity model. Physics of Fluids A, 3(7), 1760.MATHCrossRef
go back to reference Huser, A., & Biringen, S. (1993). Direct numerical simulation of turbulent flow in a square duct. Journal of Fluid Mechanics, 257, 65.MATHCrossRef Huser, A., & Biringen, S. (1993). Direct numerical simulation of turbulent flow in a square duct. Journal of Fluid Mechanics, 257, 65.MATHCrossRef
go back to reference Jarrin, N., et al. (2006). A synthetic-eddy-method for generating inflow conditions for large-eddy simulations. International Journal of Heat and Fluid Flow, 27, 585.CrossRef Jarrin, N., et al. (2006). A synthetic-eddy-method for generating inflow conditions for large-eddy simulations. International Journal of Heat and Fluid Flow, 27, 585.CrossRef
go back to reference Joshi, J., & Nayak, A. (2019). Advances of computational fluid Dynamics in nuclear reactor design and safety assessment (1st ed.). Cambridge: Woodhead Publishing. Joshi, J., & Nayak, A. (2019). Advances of computational fluid Dynamics in nuclear reactor design and safety assessment (1st ed.). Cambridge: Woodhead Publishing.
go back to reference Joslin, R. D. (2012). Discussion of DNS: Past, present, and future. NASA, Langley Research Center, circa. Joslin, R. D. (2012). Discussion of DNS: Past, present, and future. NASA, Langley Research Center, circa.
go back to reference Kaneda, Y., & Ishihara, T. (2006). High-resolution direct numerical simulation of turbulence. Journal of Turbulence, 7(20), 20.CrossRef Kaneda, Y., & Ishihara, T. (2006). High-resolution direct numerical simulation of turbulence. Journal of Turbulence, 7(20), 20.CrossRef
go back to reference Kim, W., & Menon, S. (1995). A new dynamic one-equation subgrid-scale model for large eddy simulation, 33rd aerospace sciences meeting and exhibit, Reno, Nevada. Kim, W., & Menon, S. (1995). A new dynamic one-equation subgrid-scale model for large eddy simulation, 33rd aerospace sciences meeting and exhibit, Reno, Nevada.
go back to reference Kim, J., Moin, P., & Moser, R. (1987). Turbulence statistics in fully developed channel flow at low Reynolds number. Journal of Fluid Mechanics, 177, 133.MATHCrossRef Kim, J., Moin, P., & Moser, R. (1987). Turbulence statistics in fully developed channel flow at low Reynolds number. Journal of Fluid Mechanics, 177, 133.MATHCrossRef
go back to reference Kleissl, J., & Parlange, M. B. (2004). Field experimental study of dynamic Smagorinsky models in the atmospheric surface layer. Journal of the Atmospheric Sciences, 61, 2296.CrossRef Kleissl, J., & Parlange, M. B. (2004). Field experimental study of dynamic Smagorinsky models in the atmospheric surface layer. Journal of the Atmospheric Sciences, 61, 2296.CrossRef
go back to reference Lee, S. R., et al. (2019). Topological quantum materials for realizing majorana quasiparticles. Chemistry of Materials, 31, 26. (Also available as SAND2018-11285J through Sandia National Laboratories).CrossRef Lee, S. R., et al. (2019). Topological quantum materials for realizing majorana quasiparticles. Chemistry of Materials, 31, 26. (Also available as SAND2018-11285J through Sandia National Laboratories).CrossRef
go back to reference Leonard, A. (1974). Energy cascade in large eddy simulations of turbulent fluid flow. Advances in Geophysics, 18, 237.CrossRef Leonard, A. (1974). Energy cascade in large eddy simulations of turbulent fluid flow. Advances in Geophysics, 18, 237.CrossRef
go back to reference Leonardi, S., & Castro, I. P. (2010). Channel flow over large cube roughness: A direct numerical simulation study. Journal of Fluid Mechanics, 651, 519.MATHCrossRef Leonardi, S., & Castro, I. P. (2010). Channel flow over large cube roughness: A direct numerical simulation study. Journal of Fluid Mechanics, 651, 519.MATHCrossRef
go back to reference Lesieur, M., Metais, O., & Comte, P. (2005). Large-eddy simulations of turbulence. Cambridge: Cambridge University Press.MATHCrossRef Lesieur, M., Metais, O., & Comte, P. (2005). Large-eddy simulations of turbulence. Cambridge: Cambridge University Press.MATHCrossRef
go back to reference Lilly, D. K. (1966). The representation of small-scale turbulence in numerical simulation experiments. National Center for Atmospheric Research, NCAR Manuscript 281. Lilly, D. K. (1966). The representation of small-scale turbulence in numerical simulation experiments. National Center for Atmospheric Research, NCAR Manuscript 281.
go back to reference Lilly, D. K. (1992). A proposed modification of the Germano subgrid-scale closure method. Physics of Fluids A, 4(3), 633.CrossRef Lilly, D. K. (1992). A proposed modification of the Germano subgrid-scale closure method. Physics of Fluids A, 4(3), 633.CrossRef
go back to reference Mansour, N. N., et al. (1977). Improved methods for large-eddy simulation of turbulence, Proc. Penn State Symp, Turbulent Shear Flows. Mansour, N. N., et al. (1977). Improved methods for large-eddy simulation of turbulence, Proc. Penn State Symp, Turbulent Shear Flows.
go back to reference Modi, A. (1999). Direct numerical simulation of turbulent flows. Penn State University. Modi, A. (1999). Direct numerical simulation of turbulent flows. Penn State University.
go back to reference Moet, H., et al. (2004). Wave propagation in Vortices and Vortex bursting. Physics of Fluids, 1–55. Moet, H., et al. (2004). Wave propagation in Vortices and Vortex bursting. Physics of Fluids, 1–55.
go back to reference Moin, P., & Mahesh, K. (1998). Direct numerical simulation: A tool in turbulence research. Annual Review of Fluid Mechanics, 30, 539.MathSciNetMATHCrossRef Moin, P., & Mahesh, K. (1998). Direct numerical simulation: A tool in turbulence research. Annual Review of Fluid Mechanics, 30, 539.MathSciNetMATHCrossRef
go back to reference Naqavi, I. Z., Tyacke, J. C., & Tucker, P. G. (2018). Direct numerical simulation of a wall jet: Flow physics. Journal of Fluid Mechanics, 852, 507.MathSciNetMATHCrossRef Naqavi, I. Z., Tyacke, J. C., & Tucker, P. G. (2018). Direct numerical simulation of a wall jet: Flow physics. Journal of Fluid Mechanics, 852, 507.MathSciNetMATHCrossRef
go back to reference Nicoud, F., & Ducros, F. (1999). Subgrid-scale modeling based on the square of the velocity gradient tensor. Flow, Turbulence and Combustion, 62, 183.MATHCrossRef Nicoud, F., & Ducros, F. (1999). Subgrid-scale modeling based on the square of the velocity gradient tensor. Flow, Turbulence and Combustion, 62, 183.MATHCrossRef
go back to reference Nicoud, F., et al. (2011). Using singular values to build a subgrid-scale model for large eddy simulations. Physics of Fluids, 23, 085106.CrossRef Nicoud, F., et al. (2011). Using singular values to build a subgrid-scale model for large eddy simulations. Physics of Fluids, 23, 085106.CrossRef
go back to reference Nordstrom, J., Nordin, N., & Henningson, D. (1999). The fringe region technique and the Fourier method used in the direct numerical simulation of spatially evolving viscous flows. SIAM, Journal of Scientific Computing, 20(4), 1365.MathSciNetMATHCrossRef Nordstrom, J., Nordin, N., & Henningson, D. (1999). The fringe region technique and the Fourier method used in the direct numerical simulation of spatially evolving viscous flows. SIAM, Journal of Scientific Computing, 20(4), 1365.MathSciNetMATHCrossRef
go back to reference Orszag, S. A., & Israeli, M. (1974). Numerical simulation of viscous incompressible flows. Annual Review of Fluid Mechanics, 6, 681. Orszag, S. A., & Israeli, M. (1974). Numerical simulation of viscous incompressible flows. Annual Review of Fluid Mechanics, 6, 681.
go back to reference Rai, M. M., & Moin, P. (1991). Direct simulation of turbulent flow using finite difference schemes. Journal of Computational Physics, 96, 15. (Also available as Fluid Mechanics and Heat Transfer, AIAA Paper 89-0369, 1989).MATHCrossRef Rai, M. M., & Moin, P. (1991). Direct simulation of turbulent flow using finite difference schemes. Journal of Computational Physics, 96, 15. (Also available as Fluid Mechanics and Heat Transfer, AIAA Paper 89-0369, 1989).MATHCrossRef
go back to reference Rodi, W., et al. (1997). Status of the large eddy simulation: Results of a workshop. Transactions of the ASME, Journal of Fluids Engineering, 119, 248.CrossRef Rodi, W., et al. (1997). Status of the large eddy simulation: Results of a workshop. Transactions of the ASME, Journal of Fluids Engineering, 119, 248.CrossRef
go back to reference Rodriguez, S. (2000). A 4th order, implicit, adaptive mesh refinement algorithm for simulation of flame-vortex interactions, Master Th., University of New Mexico. Rodriguez, S. (2000). A 4th order, implicit, adaptive mesh refinement algorithm for simulation of flame-vortex interactions, Master Th., University of New Mexico.
go back to reference Rodriguez, S. (2011, May). Swirling jets for the mitigation of hot spots and thermal stratification in the VHTR lower plenum, PhD Diss., University of New Mexico. Rodriguez, S. (2011, May). Swirling jets for the mitigation of hot spots and thermal stratification in the VHTR lower plenum, PhD Diss., University of New Mexico.
go back to reference Rogallo, R. S., & Moin, P. (1984). Numerical simulation of turbulent flows. Annual Review of Fluid Mechanics, 16, 99.MATHCrossRef Rogallo, R. S., & Moin, P. (1984). Numerical simulation of turbulent flows. Annual Review of Fluid Mechanics, 16, 99.MATHCrossRef
go back to reference Rudinger, K. (2017). Quantum computing is and is not amazing. Sandia National Laboratories, SAND2017-7067C. Rudinger, K. (2017). Quantum computing is and is not amazing. Sandia National Laboratories, SAND2017-7067C.
go back to reference Sengupta, T. K., & Bhaumik, S. (2019). DNS of wall-bounded turbulent flows: A first principle approach. Singapore: Springer.MATHCrossRef Sengupta, T. K., & Bhaumik, S. (2019). DNS of wall-bounded turbulent flows: A first principle approach. Singapore: Springer.MATHCrossRef
go back to reference Shaanan, S., Ferziger, J. H., & Reynolds, W. C. (1975). Numerical simulation of turbulence in the presence of shear, Report No. TF-6, Dept. of Mechanical Engineering, Stanford University. Shaanan, S., Ferziger, J. H., & Reynolds, W. C. (1975). Numerical simulation of turbulence in the presence of shear, Report No. TF-6, Dept. of Mechanical Engineering, Stanford University.
go back to reference Singer, N. (2019). Quantum computing steps further ahead with new projects. Sandia National Laboratories, Sandia LabNews. Singer, N. (2019). Quantum computing steps further ahead with new projects. Sandia National Laboratories, Sandia LabNews.
go back to reference Smagorinsky, J. (1963). General circulation experiments with the primitive equations I. The basic experiment. Monthly Weather Report, 91(3), 99.CrossRef Smagorinsky, J. (1963). General circulation experiments with the primitive equations I. The basic experiment. Monthly Weather Report, 91(3), 99.CrossRef
go back to reference Sodja, J. (2007). Turbulence models in CFD. University of Ljubljana. Sodja, J. (2007). Turbulence models in CFD. University of Ljubljana.
go back to reference Spalart, P. R. (1990). Direct numerical study of crossflow instability, laminar-turbulent transition, IUTAM Symposium. Spalart, P. R. (1990). Direct numerical study of crossflow instability, laminar-turbulent transition, IUTAM Symposium.
go back to reference Stefano, G., & Vasilyev, O. V. (2002). Sharp cutoff versus smooth filtering in large eddy simulation. Physics of Fluids, 14(1), 362.MATHCrossRef Stefano, G., & Vasilyev, O. V. (2002). Sharp cutoff versus smooth filtering in large eddy simulation. Physics of Fluids, 14(1), 362.MATHCrossRef
go back to reference Stein, O. (2009, March). Large eddy simulation of combustion in swirling and opposed jet flows, PhD Diss., Imperial College London. Stein, O. (2009, March). Large eddy simulation of combustion in swirling and opposed jet flows, PhD Diss., Imperial College London.
go back to reference Taub, G., et al. (2010, Jan 4–7). A numerical investigation of swirling turbulent Buoyant jets at transient Reynolds numbers, 48th AIAA aerospace sciences meeting, AIAA 2010-1362, Orlando, Florida. Taub, G., et al. (2010, Jan 4–7). A numerical investigation of swirling turbulent Buoyant jets at transient Reynolds numbers, 48th AIAA aerospace sciences meeting, AIAA 2010-1362, Orlando, Florida.
go back to reference Terentiev, L. (2006). The turbulence closure model based on linear anisotropy invariant analysis, Universitat Erlangen-Nurnberg, PhD Diss. Terentiev, L. (2006). The turbulence closure model based on linear anisotropy invariant analysis, Universitat Erlangen-Nurnberg, PhD Diss.
go back to reference Tryggvason, G., & Buongiorno, J. (2013). The role of direct numerical simulations in validation and verification. University of Notre Dame and Massachusetts Institute of Technology, circa. Tryggvason, G., & Buongiorno, J. (2013). The role of direct numerical simulations in validation and verification. University of Notre Dame and Massachusetts Institute of Technology, circa.
go back to reference Tutar, M., & Holdo, A. E. (2001). Computational modeling of flow around a circular cylinder in sub-critical flow regime with various turbulence models. International Journal for Numerical Methods in Fluids, 35, 763.MATHCrossRef Tutar, M., & Holdo, A. E. (2001). Computational modeling of flow around a circular cylinder in sub-critical flow regime with various turbulence models. International Journal for Numerical Methods in Fluids, 35, 763.MATHCrossRef
go back to reference Tyacke, J., et al. (2014). Large eddy simulation for turbines: Methodologies, cost and future outlooks. ASME, Journal of Turbomachinery, 136, 061009.CrossRef Tyacke, J., et al. (2014). Large eddy simulation for turbines: Methodologies, cost and future outlooks. ASME, Journal of Turbomachinery, 136, 061009.CrossRef
go back to reference Verstappen, R. W. C. P., & Veldman, A. E. P. (1997). Direct numerical simulation of turbulence at lower costs. Journal of Engineering Mathematics, 32, 143.MathSciNetMATHCrossRef Verstappen, R. W. C. P., & Veldman, A. E. P. (1997). Direct numerical simulation of turbulence at lower costs. Journal of Engineering Mathematics, 32, 143.MathSciNetMATHCrossRef
go back to reference Vreman, A. W. (2004). An eddy-viscosity subgrid-scale model for turbulent shear flow: Algebraic theory and applications. Physics of Fluids, 16(10), 3670.MATHCrossRef Vreman, A. W. (2004). An eddy-viscosity subgrid-scale model for turbulent shear flow: Algebraic theory and applications. Physics of Fluids, 16(10), 3670.MATHCrossRef
go back to reference Walther, J. H., et al. (2007). A numerical study of the stability of Helical Vortices using Vortex methods. Journal of Physics: Conference Series, 75, 012034. Walther, J. H., et al. (2007). A numerical study of the stability of Helical Vortices using Vortex methods. Journal of Physics: Conference Series, 75, 012034.
go back to reference Wilcox, D. C. (2006). Turbulence modeling for CFD (3rd ed.)., printed on 2006 and 2010. Wilcox, D. C. (2006). Turbulence modeling for CFD (3rd ed.)., printed on 2006 and 2010.
go back to reference Yeon, S. M. (2014). Large-eddy simulation of sub-, critical and super-critical Reynolds number flow past a circular cylinder, U. of Iowa, PhD Diss. Yeon, S. M. (2014). Large-eddy simulation of sub-, critical and super-critical Reynolds number flow past a circular cylinder, U. of Iowa, PhD Diss.
go back to reference Yeung, P., et al. (2010). Turbulence computations on a 40963 periodic domain: Passive scalars at high schmidt number and Lagrangian statistics conditioned on local flow structure, 63rd Annual meeting of the APS Division of Fluid Dynamics, Vol. 55, No. 16, Long Beach, California. Yeung, P., et al. (2010). Turbulence computations on a 40963 periodic domain: Passive scalars at high schmidt number and Lagrangian statistics conditioned on local flow structure, 63rd Annual meeting of the APS Division of Fluid Dynamics, Vol. 55, No. 16, Long Beach, California.
go back to reference You, D., & Moin, P. (2007). A dynamic global-coefficient subgrid-scale eddy-viscosity model for large-eddy simulation in complex geometries. Physics of Fluids, 19(6), 065110.MATHCrossRef You, D., & Moin, P. (2007). A dynamic global-coefficient subgrid-scale eddy-viscosity model for large-eddy simulation in complex geometries. Physics of Fluids, 19(6), 065110.MATHCrossRef
go back to reference Zhiyin, Y. (2015). Large-eddy simulation: Past, present and the future. Chinese Journal of Aeronautics, 28(1), 11.CrossRef Zhiyin, Y. (2015). Large-eddy simulation: Past, present and the future. Chinese Journal of Aeronautics, 28(1), 11.CrossRef
Metadata
Title
LES and DNS Turbulence Modeling
Author
Sal Rodriguez
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-28691-0_5

Premium Partner