Skip to main content
Top

2019 | OriginalPaper | Chapter

4. RANS Turbulence Modeling

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The turbulent kinetic energy equation is derived and explained in full detail. The motivation and development of RANS-based models is provided, with the aim of generating a deeper understanding of turbulence phenomena. This includes the detailed descriptions for key k-ε, k-ω, and SST hybrid models. Fundamental RANS terms are explained, such as turbulent kinematic viscosity, production, and decay. RANS models are evaluated and compared, and the best overall turbulence model is suggested. Model applicability, best performance regions, and deficiencies are discussed for zero-, one-, and two-equation RANS models. Compelling reasons for avoiding the standard k-ε are provided. Multiple insights regarding ties associated with the development of k-ε and k-ω models are presented, such as the Taylor scale and eddy dissipation.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Abdollahzadeh, M., et al. (2017). Assessment of RANS turbulence models for numerical study of laminar-turbulent transition in convection heat transfer. International Journal of Heat and Mass Transfer, 115, 1288–1308.CrossRef Abdollahzadeh, M., et al. (2017). Assessment of RANS turbulence models for numerical study of laminar-turbulent transition in convection heat transfer. International Journal of Heat and Mass Transfer, 115, 1288–1308.CrossRef
go back to reference Andersson, B., et al. (2012). Computational fluid dynamic for engineers. Cambridge: Cambridge University Press.MATH Andersson, B., et al. (2012). Computational fluid dynamic for engineers. Cambridge: Cambridge University Press.MATH
go back to reference Argyropoulos, C. D., & Markatos, N. C. (2015). Recent advances on the numerical modelling of turbulent flows. Applied Mathematical Modeling, 39, 693–732.MathSciNetMATH Argyropoulos, C. D., & Markatos, N. C. (2015). Recent advances on the numerical modelling of turbulent flows. Applied Mathematical Modeling, 39, 693–732.MathSciNetMATH
go back to reference Bae, Y. Y. (2016). A new formulation of variable turbulent Prandtl number for heat transfer to supercritical fluids. International Journal of Heat and Mass Transfer, 92, 792–806.CrossRef Bae, Y. Y. (2016). A new formulation of variable turbulent Prandtl number for heat transfer to supercritical fluids. International Journal of Heat and Mass Transfer, 92, 792–806.CrossRef
go back to reference Bae, Y. Y., Kim, E. S., & Kim, M. (2016). Numerical simulation of supercritical fluids with property-dependent turbulent Prandtl number and variable damping function. International Journal of Heat and Mass Transfer, 101, 488–501.CrossRef Bae, Y. Y., Kim, E. S., & Kim, M. (2016). Numerical simulation of supercritical fluids with property-dependent turbulent Prandtl number and variable damping function. International Journal of Heat and Mass Transfer, 101, 488–501.CrossRef
go back to reference Bae, Y. Y., Kim, E. S., & Kim, M. (2017). Assessment of low-Reynolds number k-ε turbulence models against highly buoyant flows. International Journal of Heat and Mass Transfer, 108, 529–536.CrossRef Bae, Y. Y., Kim, E. S., & Kim, M. (2017). Assessment of low-Reynolds number k-ε turbulence models against highly buoyant flows. International Journal of Heat and Mass Transfer, 108, 529–536.CrossRef
go back to reference Bernard, P. S. (1986). Limitations of the near-wall k-ε turbulence model. AIAA Journal, 24(4), 619–622.CrossRef Bernard, P. S. (1986). Limitations of the near-wall k-ε turbulence model. AIAA Journal, 24(4), 619–622.CrossRef
go back to reference Bna, S., et al., Heat transfer numerical simulations with the four parameter k-ω-kt-εt model for low-Prandtl number liquid metals, XXX UIT Heat Transfer Conference, Bologna, June 2012. Bna, S., et al., Heat transfer numerical simulations with the four parameter k-ω-ktt model for low-Prandtl number liquid metals, XXX UIT Heat Transfer Conference, Bologna, June 2012.
go back to reference Bredberg, J. (2000). On the wall boundary condition for turbulence models. Göteborg: Dept. of Thermo and Fluid Dynamics, Chalmers University of Technology. Bredberg, J. (2000). On the wall boundary condition for turbulence models. Göteborg: Dept. of Thermo and Fluid Dynamics, Chalmers University of Technology.
go back to reference Bulicek, M., & Malek, J. (2000). Large data analysis for Kolmogorov’s two-equation model of turbulence. Prague: Charles University, Mathematical Institute, Czech Republic. Bulicek, M., & Malek, J. (2000). Large data analysis for Kolmogorov’s two-equation model of turbulence. Prague: Charles University, Mathematical Institute, Czech Republic.
go back to reference Chou, P. Y. (1940). On an extension of Reynolds’ method of finding apparent stress and the nature of turbulence. Chinese Journal of Physics, 4, 1–33.MathSciNetMATH Chou, P. Y. (1940). On an extension of Reynolds’ method of finding apparent stress and the nature of turbulence. Chinese Journal of Physics, 4, 1–33.MathSciNetMATH
go back to reference Chou, P. Y. (1945). On velocity correlations and the solutions of the equations of turbulent fluctuation. Quarterly of Applied Mathematics, 3, 38–54.MathSciNetMATHCrossRef Chou, P. Y. (1945). On velocity correlations and the solutions of the equations of turbulent fluctuation. Quarterly of Applied Mathematics, 3, 38–54.MathSciNetMATHCrossRef
go back to reference Chou, P. Y., & Chou, R. L. (1995). 50 Years of turbulence research in China. Annual Review of Fluid Mechanics, 27, 1–16.MathSciNetCrossRef Chou, P. Y., & Chou, R. L. (1995). 50 Years of turbulence research in China. Annual Review of Fluid Mechanics, 27, 1–16.MathSciNetCrossRef
go back to reference Davydov, B. I. (1961). On the statistical dynamics of an incompressible turbulent fluid. Doklady Akademiya Nauk SSSR, 136, 47–50.MathSciNet Davydov, B. I. (1961). On the statistical dynamics of an incompressible turbulent fluid. Doklady Akademiya Nauk SSSR, 136, 47–50.MathSciNet
go back to reference Diaz, D. d. O., & Hinz, D. F. (2015). Performance of eddy-viscosity turbulence models for predicting Swirling pipe-flow: simulations and Laser-Doppler velocimetry, arXiv:1507.04648v2. Diaz, D. d. O., & Hinz, D. F. (2015). Performance of eddy-viscosity turbulence models for predicting Swirling pipe-flow: simulations and Laser-Doppler velocimetry, arXiv:1507.04648v2.
go back to reference Dong, J., Wang, X., & Tu, J. (2010). Numerical research about the internal flow of steam-jet vacuum pump evaluation of turbulence models and determination of the shock-mixing layer. Physics Procedia, 32, 614–622.CrossRef Dong, J., Wang, X., & Tu, J. (2010). Numerical research about the internal flow of steam-jet vacuum pump evaluation of turbulence models and determination of the shock-mixing layer. Physics Procedia, 32, 614–622.CrossRef
go back to reference El-Behery, S. M., & Hamed, M. H. (2009). A comparative study of turbulence models performance for turbulent flow in a planar asymmetric diffuser. World Academy of Science, Engineering and Technology, 53, 769–780. El-Behery, S. M., & Hamed, M. H. (2009). A comparative study of turbulence models performance for turbulent flow in a planar asymmetric diffuser. World Academy of Science, Engineering and Technology, 53, 769–780.
go back to reference Fluent. (2012). “Turbulence”, ANSYS, Lecture 7. Fluent. (2012). “Turbulence”, ANSYS, Lecture 7.
go back to reference Fraczek, D., & Wroblewski, W. (2016). Validation of numerical models for flow simulation in labyrinth seals. Journal of Physics, Conference Series, 760, 012004.CrossRef Fraczek, D., & Wroblewski, W. (2016). Validation of numerical models for flow simulation in labyrinth seals. Journal of Physics, Conference Series, 760, 012004.CrossRef
go back to reference Goldberg, U. C., & Batten, P. (2015). A wall-distance-free version of the SST turbulence model. Engineering Applications of Computational Fluid Mechanics, 9(1), 33–40.CrossRef Goldberg, U. C., & Batten, P. (2015). A wall-distance-free version of the SST turbulence model. Engineering Applications of Computational Fluid Mechanics, 9(1), 33–40.CrossRef
go back to reference Grunloh, T. P. (2016). A novel multi-scale domain overlapping CFD/STH coupling methodology for multi-dimensional flows relevant to nuclear applications, PhD dissertation, University of Michigan. Grunloh, T. P. (2016). A novel multi-scale domain overlapping CFD/STH coupling methodology for multi-dimensional flows relevant to nuclear applications, PhD dissertation, University of Michigan.
go back to reference Hamba, F. (2005). Nonlocal analysis of the Reynolds stress in turbulent shear flow. Physics of Fluids, 17, 1–10.MATHCrossRef Hamba, F. (2005). Nonlocal analysis of the Reynolds stress in turbulent shear flow. Physics of Fluids, 17, 1–10.MATHCrossRef
go back to reference Hamlington, P. E., & Dahm W. J. A. (2009). Reynolds stress closure including nonlocal and nonequilibrium effects in turbulent flows. 39th AIAA fluid dynamics conference, AIAA 2009–4162. Hamlington, P. E., & Dahm W. J. A. (2009). Reynolds stress closure including nonlocal and nonequilibrium effects in turbulent flows. 39th AIAA fluid dynamics conference, AIAA 2009–4162.
go back to reference Hanjalic, K. (1970). Two-dimensional asymmetric turbulent flow in ducts, PhD dissertation, University of London. Hanjalic, K. (1970). Two-dimensional asymmetric turbulent flow in ducts, PhD dissertation, University of London.
go back to reference Harlow, F. H., & Nakayama, P. I. (1967). Turbulence transport equations. Physics of Fluids, 10(11), 2323.MATHCrossRef Harlow, F. H., & Nakayama, P. I. (1967). Turbulence transport equations. Physics of Fluids, 10(11), 2323.MATHCrossRef
go back to reference Harlow, F. H., & Nakayama, P. I. (1968). Transport of turbulence energy decay rate. Los Alamos Scientific Laboratory, LA-3854. Harlow, F. H., & Nakayama, P. I. (1968). Transport of turbulence energy decay rate. Los Alamos Scientific Laboratory, LA-3854.
go back to reference He, S., Kim, W. S., & Bae, J. H. (2008). Assessment of performance of turbulence models in predicting supercritical pressure heat transfer in a vertical tube. International Journal of Heat and Mass Transfer, 51, 4659–4675.MATHCrossRef He, S., Kim, W. S., & Bae, J. H. (2008). Assessment of performance of turbulence models in predicting supercritical pressure heat transfer in a vertical tube. International Journal of Heat and Mass Transfer, 51, 4659–4675.MATHCrossRef
go back to reference Hellsten, A. (1997). Some improvements in Menter's k-ω SST turbulence model, AIAA, AIAA-98-2554. Hellsten, A. (1997). Some improvements in Menter's k-ω SST turbulence model, AIAA, AIAA-98-2554.
go back to reference Hellsten, A., & Laine, S. (1997). Extension of the k-ω-SST turbulence model for flows over rough surfaces, AIAA, AIAA-97-3577. Hellsten, A., & Laine, S. (1997). Extension of the k-ω-SST turbulence model for flows over rough surfaces, AIAA, AIAA-97-3577.
go back to reference Hinze, J. (1987). Turbulence (McGraw-Hill Classic Textbook Reissue Series) (p. 227). New York: McGraw-Hill. Hinze, J. (1987). Turbulence (McGraw-Hill Classic Textbook Reissue Series) (p. 227). New York: McGraw-Hill.
go back to reference Hirota, M., et al. (2017). Vortex stretching in a homogeneous isotropic turbulence. Journal of Physics: Conference Series, 822. Hirota, M., et al. (2017). Vortex stretching in a homogeneous isotropic turbulence. Journal of Physics: Conference Series, 822.
go back to reference Hrenya, C. M., et al. (1995). Comparison of low Reynolds number k-ε turbulence models in predicting fully developed pipe flow. Chemical Engineering Science, 50(12), 1923–1941.CrossRef Hrenya, C. M., et al. (1995). Comparison of low Reynolds number k-ε turbulence models in predicting fully developed pipe flow. Chemical Engineering Science, 50(12), 1923–1941.CrossRef
go back to reference Jones, W. P., & Launder, B. E. (1972). The prediction of laminarization with a two-equation model of turbulence. International Journal of Heat and Mass Transfer, 15, 301–314.CrossRef Jones, W. P., & Launder, B. E. (1972). The prediction of laminarization with a two-equation model of turbulence. International Journal of Heat and Mass Transfer, 15, 301–314.CrossRef
go back to reference Jones, W. P., & Launder, B. E. (1973). The calculation of low-Reynolds-number phenomena with a two-equation model of turbulence. International Journal of Heat and Mass Transfer, 16, 1119–1130. Jones, W. P., & Launder, B. E. (1973). The calculation of low-Reynolds-number phenomena with a two-equation model of turbulence. International Journal of Heat and Mass Transfer, 16, 1119–1130.
go back to reference Knopp, T., Eisfeld, B., & Calvo, J. B. (2009). A new extension for k–ω turbulence models to account for wall roughness. International Journal of Heat and Fluid Flow, 30(1), 54–65.CrossRef Knopp, T., Eisfeld, B., & Calvo, J. B. (2009). A new extension for k–ω turbulence models to account for wall roughness. International Journal of Heat and Fluid Flow, 30(1), 54–65.CrossRef
go back to reference Kolmogorov, A. N. (1942). Equations of turbulent motion of an incompressible fluid, Izvestiya Akademiya Nauk SSSR, Seria Fizicheska VI, No. 1-2. (Translated by D. B. Spalding.) Kolmogorov, A. N. (1942). Equations of turbulent motion of an incompressible fluid, Izvestiya Akademiya Nauk SSSR, Seria Fizicheska VI, No. 1-2. (Translated by D. B. Spalding.)
go back to reference Lam, C. K. G., & Bremhorst, K. (1981). A modified form of the k-ε model for predicting wall turbulence. Transactions of the ASME, 103, 456–460. Lam, C. K. G., & Bremhorst, K. (1981). A modified form of the k-ε model for predicting wall turbulence. Transactions of the ASME, 103, 456–460.
go back to reference Launder, B. E., et al. (1973). Prediction of free shear flows a comparison of the performance of six turbulence models, Free Shear Flows Conference Proceedings, NASA Langley, Vol. 1. (Also as NASA Report SP-321.) Launder, B. E., et al. (1973). Prediction of free shear flows a comparison of the performance of six turbulence models, Free Shear Flows Conference Proceedings, NASA Langley, Vol. 1. (Also as NASA Report SP-321.)
go back to reference Launder, B. E., & Sharma, B. I. (1974). Application of the energy-dissipation model of turbulence to the calculation of flow near a spinning disc. Letters in Heat and Mass Transfer, 1, 131–137.CrossRef Launder, B. E., & Sharma, B. I. (1974). Application of the energy-dissipation model of turbulence to the calculation of flow near a spinning disc. Letters in Heat and Mass Transfer, 1, 131–137.CrossRef
go back to reference Mansour, N. N., Kim, J., & Moin, P. (1988). Reynolds-stress and dissipation-rate budgets in a turbulent channel flow. Journal of Fluid Mechanics, 194, 15. Mansour, N. N., Kim, J., & Moin, P. (1988). Reynolds-stress and dissipation-rate budgets in a turbulent channel flow. Journal of Fluid Mechanics, 194, 15.
go back to reference Menter, F. R. (1992). Improved two-equation k-ω turbulence models for aerodynamic flows, NASA technical memorandum 103975, Ames Research Center. Menter, F. R. (1992). Improved two-equation k-ω turbulence models for aerodynamic flows, NASA technical memorandum 103975, Ames Research Center.
go back to reference Menter, F. R. (1993). Zonal two equation k-ω turbulence models for aerodynamic flows, AIAA 93-2906, 24th fluid dynamics conference. Menter, F. R. (1993). Zonal two equation k-ω turbulence models for aerodynamic flows, AIAA 93-2906, 24th fluid dynamics conference.
go back to reference Menter, F. R. (1994). Two-equation eddy-viscosity turbulence models for engineering applications. AIAA, 32(8), 1598.CrossRef Menter, F. R. (1994). Two-equation eddy-viscosity turbulence models for engineering applications. AIAA, 32(8), 1598.CrossRef
go back to reference Menter, F. R., Kuntz, M., & Langtry, R. (2003). Ten years of industrial experience with the SST turbulence model. Turbulence, Heat and Mass Transfer, 4, 1–8. Menter, F. R., Kuntz, M., & Langtry, R. (2003). Ten years of industrial experience with the SST turbulence model. Turbulence, Heat and Mass Transfer, 4, 1–8.
go back to reference Mielke, A., & Naumann, J. (2015). Global-in-time existence of weak solutions to Kolmogorov’s two-equation model of turbulence. Comptes Rendus Mathematique Academie des Sciences, Paris, Series I, 353, 321–326.MathSciNetMATH Mielke, A., & Naumann, J. (2015). Global-in-time existence of weak solutions to Kolmogorov’s two-equation model of turbulence. Comptes Rendus Mathematique Academie des Sciences, Paris, Series I, 353, 321–326.MathSciNetMATH
go back to reference Millionshtchikov, M. (1941). On the theory of homogeneous isotropic turbulence. Doklady Akademii Nauk SSSR, 32(9), 615–618. Millionshtchikov, M. (1941). On the theory of homogeneous isotropic turbulence. Doklady Akademii Nauk SSSR, 32(9), 615–618.
go back to reference Myong, H. K., & Kasagi, N. (1988). A new proposal for a k-ε turbulence model and its evaluation: 1st report, development of the model. Transactions of the Japan Society of Mechanical Engineers, Series B, 54(507). Myong, H. K., & Kasagi, N. (1988). A new proposal for a k-ε turbulence model and its evaluation: 1st report, development of the model. Transactions of the Japan Society of Mechanical Engineers, Series B, 54(507).
go back to reference Myong, H. K., et al. (1989). Numerical prediction of turbulent pipe flow heat transfer for various Prandtl number fluids with the improved k-e turbulence model. JSME International Journal, Series II, 32(4). Myong, H. K., et al. (1989). Numerical prediction of turbulent pipe flow heat transfer for various Prandtl number fluids with the improved k-e turbulence model. JSME International Journal, Series II, 32(4).
go back to reference Myong, H. K., & Kasagi, N. (1990). A new approach to the improvement of k-ε turbulence model for wall-bounded shear flows. JSME International Journal, 33(1), 63–72. Myong, H. K., & Kasagi, N. (1990). A new approach to the improvement of k-ε turbulence model for wall-bounded shear flows. JSME International Journal, 33(1), 63–72.
go back to reference Otero R. G. J., Patel A., & Pecnik, R. (2018). A novel approach to accurately model heat transfer to supercritical fluids, The 6th International Symposium - Supercritical CO2 Power Cycles. Otero R. G. J., Patel A., & Pecnik, R. (2018). A novel approach to accurately model heat transfer to supercritical fluids, The 6th International Symposium - Supercritical CO2 Power Cycles.
go back to reference Pope, S. B. (1978). An explanation of the turbulent round-jet/plane-jet anomaly. AIAA Journal, 16, 279–281.CrossRef Pope, S. B. (1978). An explanation of the turbulent round-jet/plane-jet anomaly. AIAA Journal, 16, 279–281.CrossRef
go back to reference Prandtl, L. (1945). “Uber ein neues Formelsystem fur die ausgebildete Turbulenz”, (“On a New Formulation for the Fully Developed Turbulence” or “On a New Equation System for Developed Turbulence”), Nacr. Akad. Wiss. Gottingen, Math-Phys. Kl. Prandtl, L. (1945). “Uber ein neues Formelsystem fur die ausgebildete Turbulenz”, (“On a New Formulation for the Fully Developed Turbulence” or “On a New Equation System for Developed Turbulence”), Nacr. Akad. Wiss. Gottingen, Math-Phys. Kl.
go back to reference Rodi, W. (1993). Turbulence models and their application in hydraulics a state-of-the art review (3rd ed.). Rotterdam/Brookfield: Balkema. Rodi, W. (1993). Turbulence models and their application in hydraulics a state-of-the art review (3rd ed.). Rotterdam/Brookfield: Balkema.
go back to reference Rodi, W., & Mansour, N. N. (1993). Low Reynolds number k-ε modelling with the aid of direct simulation data. Journal of Fluid Mechanics, 250, 509–529.MATHCrossRef Rodi, W., & Mansour, N. N. (1993). Low Reynolds number k-ε modelling with the aid of direct simulation data. Journal of Fluid Mechanics, 250, 509–529.MATHCrossRef
go back to reference Rodriguez, S. (2011). Swirling jets for the mitigation of hot spots and thermal stratification in the VHTR lower plenum, PhD dissertation, University of New Mexico. Rodriguez, S. (2011). Swirling jets for the mitigation of hot spots and thermal stratification in the VHTR lower plenum, PhD dissertation, University of New Mexico.
go back to reference Rotta, J. (1951). Statistische theorie nichthomogener turbulenz. Zeitschrift fur Physik, 129, 547–572. Rotta, J. (1951). Statistische theorie nichthomogener turbulenz. Zeitschrift fur Physik, 129, 547–572.
go back to reference Rotta, J. (1962). Turbulent boundary layers in incompressible flow. Progress in Aeronautical Sciences, 2, 1–219.CrossRef Rotta, J. (1962). Turbulent boundary layers in incompressible flow. Progress in Aeronautical Sciences, 2, 1–219.CrossRef
go back to reference Saffman, P. G. (1970). A model for inhomogeneous turbulent flow. Proceedings of the Royal Society of London. Series A, 317, 417–433.MATHCrossRef Saffman, P. G. (1970). A model for inhomogeneous turbulent flow. Proceedings of the Royal Society of London. Series A, 317, 417–433.MATHCrossRef
go back to reference Sawko, R. (2012). “Mathematical and computational methods of non-Newtonian, multiphase flows”, PhD dissertation, Cranfield University. Sawko, R. (2012). “Mathematical and computational methods of non-Newtonian, multiphase flows”, PhD dissertation, Cranfield University.
go back to reference Schmitt, F. G. (2007). About Boussinesq’s turbulent viscosity hypothesis: Historical remarks and a direct evaluation of its validity. Comptes Rendus Mecanique, 335, 617.MATHCrossRef Schmitt, F. G. (2007). About Boussinesq’s turbulent viscosity hypothesis: Historical remarks and a direct evaluation of its validity. Comptes Rendus Mecanique, 335, 617.MATHCrossRef
go back to reference Schobeiri, M., & Abdelfattah, S. (2013). On the reliability of RANS and URANS numerical results for high-pressure turbine simulations: A benchmark experimental and numerical study on performance and interstage flow behavior of high-pressure turbines at design and off-design conditions using two different turbine designs. ASME, Journal of Turbomachinery, 135, 061012.CrossRef Schobeiri, M., & Abdelfattah, S. (2013). On the reliability of RANS and URANS numerical results for high-pressure turbine simulations: A benchmark experimental and numerical study on performance and interstage flow behavior of high-pressure turbines at design and off-design conditions using two different turbine designs. ASME, Journal of Turbomachinery, 135, 061012.CrossRef
go back to reference Shih, T. H., & Hsu, A. T. (1992). An improved k-ε model for near wall turbulence, NASA Lewis Research Center, N92-23349. Shih, T. H., & Hsu, A. T. (1992). An improved k-ε model for near wall turbulence, NASA Lewis Research Center, N92-23349.
go back to reference Sondak, D. L. (1992). Wall functions for the k-ε turbulence model in generalized nonorthogonal curvilinear coordinates, PhD dissertation, Iowa State University. Sondak, D. L. (1992). Wall functions for the k-ε turbulence model in generalized nonorthogonal curvilinear coordinates, PhD dissertation, Iowa State University.
go back to reference Spalart, P. R. (2015). Philosophies and fallacies in turbulence modeling. Progress in Aerospace Sciences, 74, 1–15.CrossRef Spalart, P. R. (2015). Philosophies and fallacies in turbulence modeling. Progress in Aerospace Sciences, 74, 1–15.CrossRef
go back to reference Spalding, D. B. (1991). Kolmogorov’s two-equation model of turbulence. Proceedings of the Royal Society of London A, 434, 211–216.MathSciNetMATHCrossRef Spalding, D. B. (1991). Kolmogorov’s two-equation model of turbulence. Proceedings of the Royal Society of London A, 434, 211–216.MathSciNetMATHCrossRef
go back to reference Speziale, C. G., & Eringen, A. C. (1981). Nonlocal fluid mechanics description of wall turbulence. Computers and Mathematics with Applications, 7, 27–41. Speziale, C. G., & Eringen, A. C. (1981). Nonlocal fluid mechanics description of wall turbulence. Computers and Mathematics with Applications, 7, 27–41.
go back to reference Speziale, C. G., Abid, R., & Anderson, E. C. (1992). Critical evaluation of two-equation models for near-wall turbulence. AIAA Journal, 30(2), 324–331. Speziale, C. G., Abid, R., & Anderson, E. C. (1992). Critical evaluation of two-equation models for near-wall turbulence. AIAA Journal, 30(2), 324–331.
go back to reference Spiegel, M. R. (1999). Mathematical handbook of formulas and tables (Schaum’s Outlines) (2nd ed.). New York: McGraw-Hill Education. Spiegel, M. R. (1999). Mathematical handbook of formulas and tables (Schaum’s Outlines) (2nd ed.). New York: McGraw-Hill Education.
go back to reference Wilcox, D. C. (1988a). Reassessment of the scale-determining equation for advanced turbulence models. AIAA Journal, 26(11). (1988 k-𝜔 model.).MathSciNetMATHCrossRef Wilcox, D. C. (1988a). Reassessment of the scale-determining equation for advanced turbulence models. AIAA Journal, 26(11). (1988 k-𝜔 model.).MathSciNetMATHCrossRef
go back to reference Wilcox, D. C. (1988b). Multiscale model for turbulent flows. AIAA Journal, 26(11). (1988 k-𝜔 model.). Wilcox, D. C. (1988b). Multiscale model for turbulent flows. AIAA Journal, 26(11). (1988 k-𝜔 model.).
go back to reference Wilcox, D. C. (1993a). Turbulence modeling for CFD (1st ed.). La Cañada: DCW Industries, Inc. (1988 k-𝜔 model.). Wilcox, D. C. (1993a). Turbulence modeling for CFD (1st ed.). La Cañada: DCW Industries, Inc. (1988 k-𝜔 model.).
go back to reference Wilcox, D. C. (1993b). Comparison of two-equation turbulence models for boundary layers with pressure gradient. AIAA Journal, 31, 1414–1421. (1988 k-𝜔 model and a variant; low and high Re models.).MATHCrossRef Wilcox, D. C. (1993b). Comparison of two-equation turbulence models for boundary layers with pressure gradient. AIAA Journal, 31, 1414–1421. (1988 k-𝜔 model and a variant; low and high Re models.).MATHCrossRef
go back to reference Wilcox, D. C. (1994). Simulation of transition with a two-equation turbulence model. AIAA Journal, 32(2). (1988 k-𝜔 with transition from laminar to turbulent flows.).MATHCrossRef Wilcox, D. C. (1994). Simulation of transition with a two-equation turbulence model. AIAA Journal, 32(2). (1988 k-𝜔 with transition from laminar to turbulent flows.).MATHCrossRef
go back to reference Wilcox, D. C. (1998). Turbulence modeling for CFD, 2nd Ed., DCW Industries, Inc., La Cañada printed on 1998 and 2004. (1998 k-𝜔 model.) Wilcox, D. C. (1998). Turbulence modeling for CFD, 2nd Ed., DCW Industries, Inc., La Cañada printed on 1998 and 2004. (1998 k-𝜔 model.)
go back to reference Wilcox, D. C. (2006). Turbulence modeling for CFD, 3rd Ed., DCW Industries, Inc., La Cãnada, printed on 2006 and 2010. (2006 k-ω model.) Wilcox, D. C. (2006). Turbulence modeling for CFD, 3rd Ed., DCW Industries, Inc., La Cãnada, printed on 2006 and 2010. (2006 k-ω model.)
go back to reference Wilcox, D. C. (2007a). An improbable life. La Cañada: DCW Industries, Inc. Wilcox, D. C. (2007a). An improbable life. La Cañada: DCW Industries, Inc.
go back to reference Wilcox, D. C. (2007b). Formulation of the k-ω turbulence model revisited, 45th AIAA Aerospace Sciences Meeting and Exhibit. AIAA Journal 46(11), 2823–2838. (2006 k-ω model.) Wilcox, D. C. (2007b). Formulation of the k-ω turbulence model revisited, 45th AIAA Aerospace Sciences Meeting and Exhibit. AIAA Journal 46(11), 2823–2838. (2006 k-ω model.)
go back to reference Wilcox, D. C. (2012). Basic fluid mechanics (5th ed.). La Cañada: DCW Industries, Inc. Wilcox, D. C. (2012). Basic fluid mechanics (5th ed.). La Cañada: DCW Industries, Inc.
go back to reference Zeierman, S., & Wolfshtein, M. (1986). Turbulent time scale for turbulent-flow calculations. AIAA Journal, 24(10), 1606–1610.CrossRef Zeierman, S., & Wolfshtein, M. (1986). Turbulent time scale for turbulent-flow calculations. AIAA Journal, 24(10), 1606–1610.CrossRef
go back to reference Zhao, C. R., et al. (2017). Influence of various aspects of low Reynolds number k-ε turbulence models on predicting in-tube buoyancy affected heat transfer to supercritical pressure fluids. Nuclear Engineering and Design, 313, 401–413.CrossRef Zhao, C. R., et al. (2017). Influence of various aspects of low Reynolds number k-ε turbulence models on predicting in-tube buoyancy affected heat transfer to supercritical pressure fluids. Nuclear Engineering and Design, 313, 401–413.CrossRef
Metadata
Title
RANS Turbulence Modeling
Author
Sal Rodriguez
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-28691-0_4

Premium Partner