Skip to main content
Top
Published in: Journal of Materials Science 5/2018

31-10-2017 | Electronic materials

Bi-induced highly n-type carbon-doped InGaAsBi films grown by molecular beam epitaxy

Authors: Shuxing Zhou, Likun Ai, Ming Qi, Shumin Wang, Anhuai Xu, Qi Guo

Published in: Journal of Materials Science | Issue 5/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Carbon-doped InGaAsBi films on InP/Fe (100) substrates have been grown by molecular beam epitaxy (MBE). It has been found that Bismuth incorporation induces extremely high n-type carbon-doped InGaAsBi films, and its electron concentration increases linearly up to 1021 cm−3 (highest reported to date for n-type III-V semiconductor materials) with increased CBr4 supply pressure, implying InGaAsBi to be a prospective ohmic contact material for InP-based terahertz transistors. It also has been proved by secondary ion mass spectroscopy that the alloy composition of carbon-doped InGaAsBi is altered by the preferential etching effect of CBr4, but the etching effect on the Bi content is negligible.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Lin JC (2013) Characterization of low-resistance ohmic contacts to n- and p-type InGaAs. J Appl Phys 114:044504CrossRef Lin JC (2013) Characterization of low-resistance ohmic contacts to n- and p-type InGaAs. J Appl Phys 114:044504CrossRef
2.
go back to reference Dormaier R, Mohney SE (2012) Factors controlling the resistance of Ohmic contacts to n-InGaAs. J Vac Sci Technol, B 30:031209CrossRef Dormaier R, Mohney SE (2012) Factors controlling the resistance of Ohmic contacts to n-InGaAs. J Vac Sci Technol, B 30:031209CrossRef
3.
go back to reference Faria FA et al (2012) Ultra-low resistance ohmic contacts to GaN with high Si doping concentrations grown by molecular beam epitaxy. Appl Phys Lett 101:032109CrossRef Faria FA et al (2012) Ultra-low resistance ohmic contacts to GaN with high Si doping concentrations grown by molecular beam epitaxy. Appl Phys Lett 101:032109CrossRef
4.
go back to reference Baraskar AK et al (2009) Ultralow resistance, nonalloyed Ohmic contacts to n-InGaAs. J Vac Sci Technol, B 27:2036CrossRef Baraskar AK et al (2009) Ultralow resistance, nonalloyed Ohmic contacts to n-InGaAs. J Vac Sci Technol, B 27:2036CrossRef
5.
go back to reference Singisetti U et al (2008) Ultralow resistance in situ Ohmic contacts to InGaAs/InP. Appl Phys Lett 93:183502CrossRef Singisetti U et al (2008) Ultralow resistance in situ Ohmic contacts to InGaAs/InP. Appl Phys Lett 93:183502CrossRef
6.
go back to reference Rodwell MJW et al (2008) InP bipolar ICs: scaling roadmaps, frequency limits. Manuf Technol Proc. IEEE 96:271 Rodwell MJW et al (2008) InP bipolar ICs: scaling roadmaps, frequency limits. Manuf Technol Proc. IEEE 96:271
7.
go back to reference Kim M et al (2004) InP/InGaAs heterojunction bipolar transistors with low-resistance contact on heavily doped InP emitter layer. Appl Phys Lett 84:2934CrossRef Kim M et al (2004) InP/InGaAs heterojunction bipolar transistors with low-resistance contact on heavily doped InP emitter layer. Appl Phys Lett 84:2934CrossRef
8.
go back to reference Alexandrova M et al (2014) GaAsSb-based DHBTs with a reduced base access distance and f T/f MAX = 503/780 GHz. IEEE Electron Device Lett 35:1218CrossRef Alexandrova M et al (2014) GaAsSb-based DHBTs with a reduced base access distance and f T/f MAX = 503/780 GHz. IEEE Electron Device Lett 35:1218CrossRef
9.
go back to reference Kashio N et al (2014) Composition- and doping-graded-base InP/InGaAsSb double heterojunction bipolar transistors exhibiting simultaneous ft and fmax of over 500 GHz. IEEE Electron Device Lett 35:1209CrossRef Kashio N et al (2014) Composition- and doping-graded-base InP/InGaAsSb double heterojunction bipolar transistors exhibiting simultaneous ft and fmax of over 500 GHz. IEEE Electron Device Lett 35:1209CrossRef
10.
go back to reference Griffith Z et al (2005) InGaAs-InP DHBTs for increased digital IC bandwidth having a 391-GHz f T and 505-GHz fmax. IEEE Electron Device Lett 26:11CrossRef Griffith Z et al (2005) InGaAs-InP DHBTs for increased digital IC bandwidth having a 391-GHz f T and 505-GHz fmax. IEEE Electron Device Lett 26:11CrossRef
11.
go back to reference Kim DH et al (2010) 30-nm InAs PHEMTs With fT = 644 GHz and fmax = 681 GHz. IEEE Electron Device Lett 31:806CrossRef Kim DH et al (2010) 30-nm InAs PHEMTs With fT = 644 GHz and fmax = 681 GHz. IEEE Electron Device Lett 31:806CrossRef
12.
go back to reference Deal WR et al (2011) Low noise amplification at 0.67 THz using 30 nm InP HEMTs. IEEE Microwave Wirel Compon Lett 21:368CrossRef Deal WR et al (2011) Low noise amplification at 0.67 THz using 30 nm InP HEMTs. IEEE Microwave Wirel Compon Lett 21:368CrossRef
13.
go back to reference Zang Zhigang et al (2012) Thermal resistance reduction in high power superluminescent diodes by using active multi-mode interferometer. Appl Phys Lett 100:031108CrossRef Zang Zhigang et al (2012) Thermal resistance reduction in high power superluminescent diodes by using active multi-mode interferometer. Appl Phys Lett 100:031108CrossRef
14.
go back to reference Zang Zhigang et al (2010) High-power (> 110 mW) Superluminescent diodes by using active multimode interferometer. IEEE Photonics Technol Lett 22(10):721–723CrossRef Zang Zhigang et al (2010) High-power (> 110 mW) Superluminescent diodes by using active multimode interferometer. IEEE Photonics Technol Lett 22(10):721–723CrossRef
15.
go back to reference Zang Zhigang et al (2011) High power and stable high coupling efficiency (66%) superluminescent light emitting diodes by using active multi-mode interferometer. IEICE Trans Electron 94(5):862–864CrossRef Zang Zhigang et al (2011) High power and stable high coupling efficiency (66%) superluminescent light emitting diodes by using active multi-mode interferometer. IEICE Trans Electron 94(5):862–864CrossRef
16.
go back to reference Kudrawiec R et al (2011) Contactless electroreflectance study of E0 and E0+ΔSO transitions in In0.53Ga0.47BixAs1−x alloys. Appl Phys Lett 99:251906CrossRef Kudrawiec R et al (2011) Contactless electroreflectance study of E0 and E0+ΔSO transitions in In0.53Ga0.47BixAs1−x alloys. Appl Phys Lett 99:251906CrossRef
17.
go back to reference Carrier P et al (2004) Calculated spin-orbit splitting of all diamond like and zinc-blende semiconductors: effects of p1/2 local orbitals and chemical trends. Phys Rev B 70:035212CrossRef Carrier P et al (2004) Calculated spin-orbit splitting of all diamond like and zinc-blende semiconductors: effects of p1/2 local orbitals and chemical trends. Phys Rev B 70:035212CrossRef
18.
go back to reference Dongmo P et al (2012) Enhanced room temperature electronic and thermoelectric properties of the dilute bismuthide InGaBiAs. J Appl Phys 112:093710CrossRef Dongmo P et al (2012) Enhanced room temperature electronic and thermoelectric properties of the dilute bismuthide InGaBiAs. J Appl Phys 112:093710CrossRef
19.
go back to reference Alberi K et al (2007) Valence band anticrossing in GaBixAs1-x. Appl Phys Lett 91:051909CrossRef Alberi K et al (2007) Valence band anticrossing in GaBixAs1-x. Appl Phys Lett 91:051909CrossRef
20.
go back to reference Alberi K et al (2007) Valence-band anticrossing in mismatched III-V semiconductor alloys. Phys Rev B 75:045203CrossRef Alberi K et al (2007) Valence-band anticrossing in mismatched III-V semiconductor alloys. Phys Rev B 75:045203CrossRef
21.
go back to reference Lewis RB et al (2012) Growth of high Bi concentration GaAs1−xBix by molecular beam epitaxy. Appl Phys Lett 101:082112CrossRef Lewis RB et al (2012) Growth of high Bi concentration GaAs1−xBix by molecular beam epitaxy. Appl Phys Lett 101:082112CrossRef
22.
go back to reference Sweeney SJ, Jin SR (2013) Bismide-nitride alloys: promising for efficient light emitting devices in the near- and mid-infrared. J Appl Phys 113:043110CrossRef Sweeney SJ, Jin SR (2013) Bismide-nitride alloys: promising for efficient light emitting devices in the near- and mid-infrared. J Appl Phys 113:043110CrossRef
23.
go back to reference Feng G et al (2005) New III–V semiconductor InGaAsBi alloy grown by molecular beam epitaxy. Japan. J Appl Phys 44:L1161CrossRef Feng G et al (2005) New III–V semiconductor InGaAsBi alloy grown by molecular beam epitaxy. Japan. J Appl Phys 44:L1161CrossRef
24.
go back to reference Feng G et al (2006) Bismuth containing III–V quaternary alloy InGaAsBi grown by MBE. Phys Status Solidi A 203:2670CrossRef Feng G et al (2006) Bismuth containing III–V quaternary alloy InGaAsBi grown by MBE. Phys Status Solidi A 203:2670CrossRef
25.
go back to reference Feng G et al (2007) Temperature dependence of Bi behavior in MBE growth of InGaAs/InP. J Cryst Growth 301:121CrossRef Feng G et al (2007) Temperature dependence of Bi behavior in MBE growth of InGaAs/InP. J Cryst Growth 301:121CrossRef
26.
27.
go back to reference Zhong Y et al (2012) Optical and electrical characterization of InGaBiAs for use as a mid-infrared optoelectronic material. Appl Phys Lett 100:112110CrossRef Zhong Y et al (2012) Optical and electrical characterization of InGaBiAs for use as a mid-infrared optoelectronic material. Appl Phys Lett 100:112110CrossRef
28.
go back to reference Devenson J et al (2012) Structure and optical properties of InGaAsBi with up to 7% bismuth. Appl Phys Express 5:015503CrossRef Devenson J et al (2012) Structure and optical properties of InGaAsBi with up to 7% bismuth. Appl Phys Express 5:015503CrossRef
29.
go back to reference Zhou S et al (2015) Effects of buffer layer preparation and Bi concentration on InGaAsBi epilayers grown by gas source molecular beam epitaxy. Semicond Sci Technol 30:125001CrossRef Zhou S et al (2015) Effects of buffer layer preparation and Bi concentration on InGaAsBi epilayers grown by gas source molecular beam epitaxy. Semicond Sci Technol 30:125001CrossRef
30.
go back to reference Schott GM et al (2004) Doping of low-temperature GaAs and GaMnAs with carbon. Appl Phys Lett 85:4678CrossRef Schott GM et al (2004) Doping of low-temperature GaAs and GaMnAs with carbon. Appl Phys Lett 85:4678CrossRef
31.
go back to reference Schoenfeld W et al (1998) Doping of InSb and InAs using CBr 4 during growth by gas source molecular beam epitaxy. J Cryst Growth 188:50CrossRef Schoenfeld W et al (1998) Doping of InSb and InAs using CBr 4 during growth by gas source molecular beam epitaxy. J Cryst Growth 188:50CrossRef
32.
go back to reference Ito H, Ishibashi T (1991) Carbon incorporation in (aluminum gallium) arsenide, (aluminum indium) arsenide and (gallium indium) arsenide ternary alloys grown by molecular beam epitaxy. Japan. J Appl Phys 30:L944CrossRef Ito H, Ishibashi T (1991) Carbon incorporation in (aluminum gallium) arsenide, (aluminum indium) arsenide and (gallium indium) arsenide ternary alloys grown by molecular beam epitaxy. Japan. J Appl Phys 30:L944CrossRef
33.
go back to reference Ro JR et al (1997) Growth temperature-dependent conduction-type inversion of C-doped InGaAs grown by chemical beam epitaxy. J Cryst Growth 175:1231CrossRef Ro JR et al (1997) Growth temperature-dependent conduction-type inversion of C-doped InGaAs grown by chemical beam epitaxy. J Cryst Growth 175:1231CrossRef
34.
go back to reference Xu A et al (2007) Heavily carbon-doped p-type InGaAs grown by gas source molecular beam epitaxy for application to heterojunction bipolar transistors. J Cryst Growth 301:212CrossRef Xu A et al (2007) Heavily carbon-doped p-type InGaAs grown by gas source molecular beam epitaxy for application to heterojunction bipolar transistors. J Cryst Growth 301:212CrossRef
35.
go back to reference Abernathy CR et al (1995) Electrical and structural properties of InxGa1-xN on GaAs. Appl Phys Lett 66(13):1632CrossRef Abernathy CR et al (1995) Electrical and structural properties of InxGa1-xN on GaAs. Appl Phys Lett 66(13):1632CrossRef
36.
go back to reference Petkos GM et al (1996) Sulphur doping of InGaAs using diethylsulphide. J Cryst Growth 164:415CrossRef Petkos GM et al (1996) Sulphur doping of InGaAs using diethylsulphide. J Cryst Growth 164:415CrossRef
37.
go back to reference Joyce TB et al (1995) The use of diethylsulphide for the doping of GaAs, AlGaAs and InGaAs grown by chemical beam epitaxy. J Cryst Growth 150:644CrossRef Joyce TB et al (1995) The use of diethylsulphide for the doping of GaAs, AlGaAs and InGaAs grown by chemical beam epitaxy. J Cryst Growth 150:644CrossRef
38.
go back to reference Joyce TB et al (1996) Growth of carbon-doped GaAs, AlGaAs and InGaAs by chemical beam epitaxy and the application of in situ monitoring. J Cryst Growth 164:371CrossRef Joyce TB et al (1996) Growth of carbon-doped GaAs, AlGaAs and InGaAs by chemical beam epitaxy and the application of in situ monitoring. J Cryst Growth 164:371CrossRef
39.
go back to reference Tateno K, Amano C (1999) Carbon doping and etching in GaxIn1-xAsyP1-y on GaAs substrates using CBr 4 by metalorganic chemical vapor deposition. J Electron Mater 28:63CrossRef Tateno K, Amano C (1999) Carbon doping and etching in GaxIn1-xAsyP1-y on GaAs substrates using CBr 4 by metalorganic chemical vapor deposition. J Electron Mater 28:63CrossRef
Metadata
Title
Bi-induced highly n-type carbon-doped InGaAsBi films grown by molecular beam epitaxy
Authors
Shuxing Zhou
Likun Ai
Ming Qi
Shumin Wang
Anhuai Xu
Qi Guo
Publication date
31-10-2017
Publisher
Springer US
Published in
Journal of Materials Science / Issue 5/2018
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-1765-3

Other articles of this Issue 5/2018

Journal of Materials Science 5/2018 Go to the issue

Premium Partners