Skip to main content
Top
Published in: Journal of Materials Science 5/2018

06-11-2017 | Electronic materials

Electronic and thermal properties of stoichiometric Pt3Si films grown by co-evaporation

Authors: Robert T. Fryer, Robert J. Lad

Published in: Journal of Materials Science | Issue 5/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A stoichiometric Pt3Si thin-film phase has been stabilized by electron beam (e-beam) co-evaporation of controlled Pt and Si fluxes onto several different substrates. This Pt3Si phase has high electrical conductivity (≥ 106 S/m) and is inaccessible via the more conventional solid-state thermal reaction of a Pt film/Si substrate diffusion couple, a method that is ubiquitous for forming Pt-silicide films (PtSi and Pt2Si) in the semiconductor industry. The Pt3Si films exhibit finely grained columnar morphologies when grown at ambient temperature but develop a larger granular morphology at deposition temperatures exceeding 200 °C and have an electrical conductivity of ~ 1 × 106 S/m independent of substrate type and film thickness. For films deposited above 400 °C, film agglomeration and grain boundary grooving during fabrication leads to a decrease in overall film conductivity. Pt3Si films are less conductive than Pt2Si films, yet have a higher DOS population near the Fermi level as measured by valence band photoemission spectra in agreement with DOS calculations, which suggests a lower electron mobility in the Pt3Si phase. In situ high-temperature X-ray diffraction (XRD) studies indicate that a polymorphic phase transition between a monoclinic-Pt3Si and an orthorhombic-Pt3Si phase occurs ca. 225 °C. Also, the melting temperature of Pt3Si films was measured by in situ XRD to be ca. 920 °C; after cooling from melt, a small subset of Pt3Si grains resolidify with a crystallographic texture strongly oriented in the direction of the film normal.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Strydom WJ, Lombaard JC, Pretorius R (1985) Thermal oxidation of the silicides CoSi2, CrSi2, NiSi2, PtSi, TiSi2, and ZrSi2. Thin Solid Films 131:215–231CrossRef Strydom WJ, Lombaard JC, Pretorius R (1985) Thermal oxidation of the silicides CoSi2, CrSi2, NiSi2, PtSi, TiSi2, and ZrSi2. Thin Solid Films 131:215–231CrossRef
2.
go back to reference Xu D-X, McCaffrey JP, Das SR, Aers GC, Erickson LE (1996) Electrical and structural properties of PtSi films in deep submicron lines. Appl Phys Lett 68:3588–3590CrossRef Xu D-X, McCaffrey JP, Das SR, Aers GC, Erickson LE (1996) Electrical and structural properties of PtSi films in deep submicron lines. Appl Phys Lett 68:3588–3590CrossRef
3.
go back to reference Chen LJ (ed) (2004) Silicide technology for integrated circuits. IEE, London Chen LJ (ed) (2004) Silicide technology for integrated circuits. IEE, London
4.
go back to reference Zhang S-L, Östling M (2003) Metal silicides in CMOS technology: past, present, and future trends. Crit Rev Solid State Mater Sci 28:1–129CrossRef Zhang S-L, Östling M (2003) Metal silicides in CMOS technology: past, present, and future trends. Crit Rev Solid State Mater Sci 28:1–129CrossRef
5.
go back to reference Maex K, Van Rossum M (eds) (1995) Properties of metal silicides. INSPEC, London Maex K, Van Rossum M (eds) (1995) Properties of metal silicides. INSPEC, London
6.
go back to reference Murarka SP (1995) Silicide thin films and their applications in microelectronics. Intermetallics 3:173–186CrossRef Murarka SP (1995) Silicide thin films and their applications in microelectronics. Intermetallics 3:173–186CrossRef
7.
go back to reference Colgan EG, Gambino JP, Hong QZ (1996) Formation and stability of silicides on polycrystalline silicon. Mater Sci Eng R 16:43–96CrossRef Colgan EG, Gambino JP, Hong QZ (1996) Formation and stability of silicides on polycrystalline silicon. Mater Sci Eng R 16:43–96CrossRef
8.
go back to reference Gambino JP, Colgan EG (1998) Silicides and ohmic contacts. Mater Chem Phys 52:99–146CrossRef Gambino JP, Colgan EG (1998) Silicides and ohmic contacts. Mater Chem Phys 52:99–146CrossRef
9.
go back to reference Canali C, Catellani C, Prudenziati M, Wadlin WH, Evans CA Jr (1977) Pt2Si and PtSi formation with high-purity Pt thin films. Appl Phys Lett 31:43–46CrossRef Canali C, Catellani C, Prudenziati M, Wadlin WH, Evans CA Jr (1977) Pt2Si and PtSi formation with high-purity Pt thin films. Appl Phys Lett 31:43–46CrossRef
10.
go back to reference Pant AK, Murarka SP, Shepard C, Lanford W (1992) Kinetics of platinum silicide formation during rapid thermal processing. J Appl Phys 72:1833–1836CrossRef Pant AK, Murarka SP, Shepard C, Lanford W (1992) Kinetics of platinum silicide formation during rapid thermal processing. J Appl Phys 72:1833–1836CrossRef
11.
go back to reference Faber EJ, Wolters RAM, Schmitz J (2011) On the kinetics of platinum silicide formation. Appl Phys Lett 98:082102CrossRef Faber EJ, Wolters RAM, Schmitz J (2011) On the kinetics of platinum silicide formation. Appl Phys Lett 98:082102CrossRef
12.
go back to reference Tanner LE, Okamoto H (1991) The Pt–Si (platinum–silicon) system. J Phase Equilib 12:571–574CrossRef Tanner LE, Okamoto H (1991) The Pt–Si (platinum–silicon) system. J Phase Equilib 12:571–574CrossRef
13.
go back to reference Xu LL, Wang J, Liu HS, Jin ZP (2008) Thermodynamic assessment of the Pt–Si binary system. CALPHAD 32:101–105CrossRef Xu LL, Wang J, Liu HS, Jin ZP (2008) Thermodynamic assessment of the Pt–Si binary system. CALPHAD 32:101–105CrossRef
14.
go back to reference Pretorius R, Marais TK, Theron CC (1993) Thin film compound phase formation sequence: an effective heat of formation model. Mater Sci Eng 10:1–83 Pretorius R, Marais TK, Theron CC (1993) Thin film compound phase formation sequence: an effective heat of formation model. Mater Sci Eng 10:1–83
15.
go back to reference Gas P, Tardy J, LeGoues F, d’Heurle FM (1987) Electrical measurement of the formation of the platinum-rich metal silicides by metal silicon reaction. Appl Phys Lett 50:1135–1137CrossRef Gas P, Tardy J, LeGoues F, d’Heurle FM (1987) Electrical measurement of the formation of the platinum-rich metal silicides by metal silicon reaction. Appl Phys Lett 50:1135–1137CrossRef
16.
go back to reference Streller F, Qi Y, Yang J, Mangolini F, Rappe AM, Carpick RW (2016) Valence band control of metal silicide films via stoichiometry. J Phys Chem Lett 7:2573–2578CrossRef Streller F, Qi Y, Yang J, Mangolini F, Rappe AM, Carpick RW (2016) Valence band control of metal silicide films via stoichiometry. J Phys Chem Lett 7:2573–2578CrossRef
17.
go back to reference Streller F, Agarwal R, Mangolini F, Carpick RW (2015) Novel METAL SILICIDE THIN FILMS BY DESIGN VIA CONTROLLED SOLID-STATE DIffUSION. Chem Mater 27:4247–4253CrossRef Streller F, Agarwal R, Mangolini F, Carpick RW (2015) Novel METAL SILICIDE THIN FILMS BY DESIGN VIA CONTROLLED SOLID-STATE DIffUSION. Chem Mater 27:4247–4253CrossRef
18.
go back to reference Streller F, Wabiszewski GE, Mangolini F, Feng G, Carpick RW (2014) Tunable, source-controlled formation of platinum silicides and nanogaps from thin precursor films. Adv Mater Interfaces 7:1300120CrossRef Streller F, Wabiszewski GE, Mangolini F, Feng G, Carpick RW (2014) Tunable, source-controlled formation of platinum silicides and nanogaps from thin precursor films. Adv Mater Interfaces 7:1300120CrossRef
19.
go back to reference Fryer RT, Lad RJ (2016) Synthesis and thermal stability of Pt3Si, Pt2Si, and PtSi films grown by e-beam co-evaporation. J Alloy Compd 682:216–224CrossRef Fryer RT, Lad RJ (2016) Synthesis and thermal stability of Pt3Si, Pt2Si, and PtSi films grown by e-beam co-evaporation. J Alloy Compd 682:216–224CrossRef
20.
go back to reference Lad RJ, Stewart DM, Fryer RT, Sell JC, Frankel DJ, Bernhardt GP, Meulenberg RW (2015) Electrically conductive Pt–Zr–B and Pt–Si thin films for use in high temperature harsh environments. In: Material research society symposium proceedings, vol 1746 Lad RJ, Stewart DM, Fryer RT, Sell JC, Frankel DJ, Bernhardt GP, Meulenberg RW (2015) Electrically conductive Pt–Zr–B and Pt–Si thin films for use in high temperature harsh environments. In: Material research society symposium proceedings, vol 1746
21.
go back to reference International Centre for Diffraction Data, Powder Diffraction File, Card No. 04-015–7964, monoclinic-Pt3Si International Centre for Diffraction Data, Powder Diffraction File, Card No. 04-015–7964, monoclinic-Pt3Si
22.
go back to reference International Centre for Diffraction Data, Powder Diffraction File, Card No. 00-034-0956, orthorhombic-Pt3Si International Centre for Diffraction Data, Powder Diffraction File, Card No. 00-034-0956, orthorhombic-Pt3Si
23.
go back to reference Mantovani S, Nava F, Nobili C, Ottaviani G (1986) In-diffusion of Pt in Si from the PtSi/Si interface. Phys Rev B 33:5536–5544CrossRef Mantovani S, Nava F, Nobili C, Ottaviani G (1986) In-diffusion of Pt in Si from the PtSi/Si interface. Phys Rev B 33:5536–5544CrossRef
24.
go back to reference Bracht H, Overhof H (1996) Kinetics of interstitial substitutional exchange of Zn, Pt, and Au in Si: experimental results and theoretical calculations. Phys Stat Sol A 158:47–55CrossRef Bracht H, Overhof H (1996) Kinetics of interstitial substitutional exchange of Zn, Pt, and Au in Si: experimental results and theoretical calculations. Phys Stat Sol A 158:47–55CrossRef
25.
go back to reference Kumagai Y, Ishimoto K, Hashimoto S, Park K-H, Hasegawa F (1995) Comparison of planar to columnar transformation of PtSi layers on Si(001) and Si(111) substrates in the Si capping layer growth process. Jpn J Appl Phys 34:4621–4626CrossRef Kumagai Y, Ishimoto K, Hashimoto S, Park K-H, Hasegawa F (1995) Comparison of planar to columnar transformation of PtSi layers on Si(001) and Si(111) substrates in the Si capping layer growth process. Jpn J Appl Phys 34:4621–4626CrossRef
30.
go back to reference Jain A, Ong SP, Hautier G, Chen W, Richards WD, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G, Persson KA (2013) The materials project: a materials genome approach to accelerating materials innovation. APL Mater 1:011002CrossRef Jain A, Ong SP, Hautier G, Chen W, Richards WD, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G, Persson KA (2013) The materials project: a materials genome approach to accelerating materials innovation. APL Mater 1:011002CrossRef
31.
go back to reference Franco N, Klepeis JE, Bostedt C, van Buuren T, Heske C, Pankratov O, Callcott TA, Ederer DL, Terminello LJ (2003) Experimental and theoretical electronic structure determination for PtSi. Phys Rev B 68:045116CrossRef Franco N, Klepeis JE, Bostedt C, van Buuren T, Heske C, Pankratov O, Callcott TA, Ederer DL, Terminello LJ (2003) Experimental and theoretical electronic structure determination for PtSi. Phys Rev B 68:045116CrossRef
32.
go back to reference Franco N, Klepeis JE, Bostedt C, van Buuren T, Heske C, Pankratov O, Terminello LJ (2001) Valence band study of the PtSi by synchrotron radiation photoelectron spectroscopy. J Electron Spectrosc 1191:114–116 Franco N, Klepeis JE, Bostedt C, van Buuren T, Heske C, Pankratov O, Terminello LJ (2001) Valence band study of the PtSi by synchrotron radiation photoelectron spectroscopy. J Electron Spectrosc 1191:114–116
33.
go back to reference Bentmann H, Demkov AA, Gregory R, Zollner S (2008) Electronic, optical, and surface properties of PtSi thin films. Phys Rev B 78:205302CrossRef Bentmann H, Demkov AA, Gregory R, Zollner S (2008) Electronic, optical, and surface properties of PtSi thin films. Phys Rev B 78:205302CrossRef
34.
go back to reference Klepeis JE, Beckstein O, Pankratov O, Hart GLW (2001) Chemical bonding, elasticity, and valence force field models: a case study for alpha-Pt2Si and PtSi. Phys Rev B 64:155110CrossRef Klepeis JE, Beckstein O, Pankratov O, Hart GLW (2001) Chemical bonding, elasticity, and valence force field models: a case study for alpha-Pt2Si and PtSi. Phys Rev B 64:155110CrossRef
35.
go back to reference Smith WF, Hashemi J (2006) Foundations of materials science and engineering, 4th edn. McGraw-Hill, New York, pp 318–320 Smith WF, Hashemi J (2006) Foundations of materials science and engineering, 4th edn. McGraw-Hill, New York, pp 318–320
36.
go back to reference Thompson CV (2012) Solid-state dewetting of thin films. Annu Rev Mater Res 42:399–434CrossRef Thompson CV (2012) Solid-state dewetting of thin films. Annu Rev Mater Res 42:399–434CrossRef
Metadata
Title
Electronic and thermal properties of stoichiometric Pt3Si films grown by co-evaporation
Authors
Robert T. Fryer
Robert J. Lad
Publication date
06-11-2017
Publisher
Springer US
Published in
Journal of Materials Science / Issue 5/2018
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-1758-2

Other articles of this Issue 5/2018

Journal of Materials Science 5/2018 Go to the issue

Premium Partners